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Fig. 1. VideoPoseVR reconstructs 3D pose and motion from 2D videos to enable rapid prototyping of character
animation in VR. Users without animation experience can import and convert videos into a 3D motion dataset.
They can visualize and manipulate the life-size motion to animate 3D characters in VR.

We present VideoPoseVR , a video-based animation authoring workflow using online videos to author character
animations in VR. It leverages the state-of-the-art deep learning approach to reconstruct 3D motions from
online videos, caption the motions, and store them in a motion dataset. Creators can import the videos, search
in the dataset, modify the motion timeline, and combine multiple motions from videos to author character
animations in VR. We implemented a proof-of-concept prototype and conducted a user study to evaluate the
feasibility of the video-based authoring approach as well as gather initial feedback of the prototype. The study
results suggest that VideoPoseVR was easy to learn for novice users to author animations and enable rapid
exploration of prototyping for applications such as entertainment, skills training, and crowd simulations.
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1 INTRODUCTION

Recently a growing number of artists, filmmakers and animators have explored using Virtual
Reality (VR) for storytelling and filmmaking. Creating 3D animated stories requires professional
desktop software such as Maya and Blender. Creators need to manually pose the joints of the 3D
character to create the keyframes, which takes a significant part of the time. The keyframe-based
animation creation requires extensive learning and exercise to create convincing results, which
can be complicated and difficult for novice users. Creating animated VR scenes can be particularly
challenging as creators have to alternate between the desktop software and VR environment to
validate their creation in VR, adding additional difficulty to their workflow [2, 4].

To address this challenge, several work have explored creating 3D animations directly in Mixed
Reality with controllers [18, 56, 73], hand gestures [38], and object motions [53]. Commercial
products such as Oculus Quill [18] and AnimVR [56] allow users to create animated cartoons using
3D strokes. Other tools such as AnimationVR [73] and XRDirector [54] use VR devices as puppets to
directly manipulate the 3D character. Compare to traditional animation software, these tools make
it easier and faster to create animations in particular for novice users as an inexpensive alternative
to professional motion capture systems. However, they still require manual input from users to
perform the motion or manipulate the joints. The animations that can be created are often limited
to what can be performed by the user. Additionally, creators can usually author one animation at
a time, which makes it time-consuming to create multiple animations for a group of characters
performing different motions in the scene.

While users spend a lot of effort creating animation assets, motions especially human activities
are widely available in today’s online videos. People record and share their physical movements
in various activities such as dancing and fitness. In this work, we introduce VideoPoseVR , a novel
animation authoring approach that uses online videos to author VR character animations. It
leverages the state-of-the-art deep learning approach to reconstruct 3D motions from online videos,
caption the motions, and store them in a motion dataset. Creators can import the videos, search in
the dataset, modify the motion timeline, and combine the motions from different videos to create
new animations in VR. By leveraging the large number of human motions that are present in online
videos, creators can quickly animate multiple characters with diverse motions.

To explore the feasibility of utilizing video-based motion to animate characters, we implemented a
proof-of-concept system that converted 161 online videos into a 3D motion dataset. We investigated
how well users could use the dataset to quickly animate characters in VR by conducting a user
study with ten participants. We found that novice users were able to learn and use VideoPoseVR to
create character animations in VR, while advanced animators might use the reconstructed motion
as a starting point to refine the animation and expedite the workflow. Our contributions include: 1)
a novel video-based character animation authoring workflow in VR, 2) a proof-of-concept system
with a detailed set of methods using the state-of-the-art deep learning approach to reconstruct,
classify, and convert the 3D motion from online videos into keyframe-based animations, and 3)
the evaluation of the proposed approach that demonstrated the feasibility and provided design
implications.
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2 RELATED WORK

Our work was inspired by research from the domains of 3D human pose estimation using 2D videos,
the utilization of human poses in videos, authoring tools that can be used to prototype VR scenes
and 3D character animation.

2.1 Animation Authoring in AR/VR

Traditionally, creating 3D characters animations requires using professional animation software
such as Maya, 3ds Max and Blender. Animators need to manually pose the joints of the 3D character
to create the keyframes that are interpolated by the software, which takes a significant part of
the time spent in animating characters. The keyframe-based approach also requires extensive
learning and exercise to create convincing results of character movement, which is challenging
for novice animators. Another widespread performance-based approach uses high-end motion
capture (Mocap) systems (e.g. Optitrack) or off-the-shelf equipment such as RBG cameras [35, 79]
or depth cameras [13, 24] to capture the performance of skilled actors. These systems may still
require extensive instrumentation, skilled actors, and laborious post-processing steps, which makes
them inaccessible for many researchers, artists, and content creators.

As VR headsets and smartphone-based AR become more accessible, various work have explored
using AR and VR to reduce the complexity of posing the characters in the keyframe-based approach.
AR/VR applications and tools such as Tvori [69], VR Blender [7], PoseMMR [57], AnimationVR
[73], and AR-Pose [72] allow users to directly manipulate the joints in 3D using VR controllers
or smartphones instead of using 2D translation and rotation widgets. Other approaches extend
the existing performance-based tools and puppetry interfaces [23, 29] by leveraging the tracking
capability of AR and VR devices. Smartphone-based AR allows users to directly turn the phone into
a puppet to control the character [55, 81] by tracking the phone. Systems such as Mindshow [51],
SpatialProto [53], and XRDirector [54] capture the physical motion of VR devices [51] and gestures
[38] and directly apply the motion to characters. Other related applications such as Oculus Quill
[18] and AnimVR [56] allow users to create animated cartoons using 3D strokes.

While these tools are intuitive to use, they still require manual input to generate the 3D poses
by performing the motion or manipulating the joints. The animations that can be created are
often limited to what can be performed by the user. Additionally, users can usually author one
animation at a time. The process of creation can be tedious to create multiple animation. We present
a solution to generate 3D motion from online videos. While videos have been used to prototype
AR experience by capturing the objects and their surrounding environment [42, 43], we focus on
the human motions captured in the videos. Compared to existing Mocap dataset [46], the large
number of online videos provides a diverse set of human motions that can be potentially used as
motion assets for animators to create character animations. Similar to prior work that use a gallery
of existing assets (such as motions [16] and pictures [37, 41]) as starting examples, we consider
the video-based motion assets as potential starting point for creators to work on. Our work can be
combined with existing VR-based animation authoring tools such as MindShow [51] and PoseMMR
[57] to further refine the motion in VR and facilitate the workflow of animation creation.

2.2 Immersive Authoring Tools for Novices

Prior work has found that the learning affordances of VR helped bridging experience-related gaps
between novices and experts for 3D design [77]. Novice and expert users differ in expertise that
involves domain knowledge [22, 77] and spatial abilities [3]. The multi-modal feedback in VR
promotes meaningful learning for novice to pick up the domain knowledge, while the spatial visu-
alization in VR enables novices to design directly in 3D instead of needing to imagine and mentally
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manipulate 2D representations in traditional desktop software. Several immersive authoring tools
have enabled users to create 3D models or scenes in VR. For example, CaveCAD [30] enabled users
to position and transform 3D objects directly in a scene. MagicalHands [1] used direct gestural
manipulations for the authoring and modification of animation effects for a 3D object. One Man
Movie [21] provided tools for scene layouts, 3D character poses and animations, as well as complex
camera rigs. Commercial applications such as Microsoft Maquette [50], Oculus Medium [17] and
Google Tilt Brush [26] delivered compelling immersive 3D sketching and sculpting experiences to
consumers. The advances of these tools allow casual users to create stunning VR content, rather
than exclusively for professionals. Similar to previous work, our work provides an immersive user
interface in VR to enable intuitive in-situ character animation creation for casual users.

2.3 Multi-person 3D Pose Estimation from Videos

Motion capture from monocular video has many advantages over traditional motion capture because
it does not require a complex setup, it is low cost, and it offers a non-intrusive capture process.
With the availability of video datasets associated with ground truth motion capture data (e.g.,
Human3.6M [31] and HumanEva [64]), significant progress has been made in recent years by using
data-driven learning-based approaches. These approaches can be classified into two categories: the
multi-stage and the one-stage. Most of the multi-stage methods are generally based on a top-down
approach, which first detect people using bounding boxes and then apply a single person 3D
estimator to each person. These 3D pose estimators [15, 59, 61] lift the 2D keypoints [8, 10, 19] into
3D joints using regression [12, 47] or model fitting [6]. Some work jointly recovers human shape
and pose [34, 36, 80]. However, their predictions often fail to deal with truncation, scene occlusion,
and person-person occlusion due to overlapping bounding boxes. Besides, they tend to output poor
results on in-the-wild datasets like 3DPW [74] or MPI-INF-3DHP [15].

To avoid noisy bounding box prediction, one-stage solutions estimate body joint positions of all
people and then group them into individuals. Zanfir et al. [83] proposed a bottom-up approach that
simultaneously estimates 2D and 3D poses, and group joints based on 2D pose prediction scores.
Mehta et al. [48] proposed occlusion-robust pose-maps and exploited the body part association
to resolve the joint grouping problem. Recently, Sun et al. proposed ROMP [66], an one-stage
regression network for monocular multi-person 3D mesh regression. They proposed the use of
explicit body-center-guided representations to facilitate pixel-level human mesh regression in
an end-to-end manner and developed a collision-aware representation to deal with the severe
overlapping cases. ROMP achieved state-of-the-art performance on multiple benchmarks including
real-time inference speed. In this work, we utilized ROMP to reconstruct 3D multi-person human
motions from online videos, enabling rapid prototyping of character animations with various 3D
human motion extracted from videos.

2.4 Applications Utilizing 3D Human Pose

Human pose estimation from videos have been widely adopted and utilized in several applications
such as human behavior analysis, the generation of animations, and for movement learning. In terms
of human behavior analysis, prior work has utilized human poses for human action recognition in
videos [45, 84]. In addition, Lee et al. developed Skeletonographer, a tool that supports anonymous
digital ethnography studies using skeletonized representations of people [39, 40]. ReliveReality [75]
utilized various computer vision techniques to reconstruct an experience in 3D by reconstructed
avatars, 3D environments, and 3D human poses. The reconstructed 3D experience offered a great
opportunity to relive and study human behaviour. To facilitate movement learning, Tharatipyakul
et al. [68] developed a web-based application that overlayed the detected 2D skeletons of a user and
a teacher in a video on screen, so that the user could realize how his or her pose was different from
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the teacher. SuppleView [28] enabled coordinate translation-free viewing between an observer
and an actor by inferring the 3D poses from trainer videos and creating a virtual 3D character as
an actor of the predicted 3D movements. Takahashi et al. [67] also introduced a VR-based batter
training system that estimated the 3D positions of a user ’s body parts during a swing to visualize
and provide real time feedback. Prior research has also leveraged human poses in video to generate
animations. For instance, PoseTween [44] leveraged the motion of the subject of a video to create
pose-driven tween animations of virtual objects. Park et al. [58] and Willett et al. [76] used reference
motions in human action videos to guide the deformation of 2d virtual characters.

Human poses have also been used to control video playback. PoseAsQuery [27] was an interactive
browsing system that repeatedly replayed a specific segment of a video by using a person’s body
movement. Reactive Video [14] used OpenPose [9] to extract user’s and instructor’s poses and
adapt the playback of the video to mimic the user’s movements. VideoPoseVR is the first prototype
that allows users to quickly prototype character animations in VR by leveraging a variety of
reconstructed 3D human motions from online videos.

3 DESIGN GOALS

After analyzing commercial offerings for animation and identifying the existing gaps, as well as
the reviewing technical advances in machine learning and video processing, we developed a set of
design goals to guide the development of the system.

D1. Accessible to Novices: Content creators without animation experience should be able
to intuitively use animation sequences in their scenes. No advanced knowledge of keyframing,
rigging, or advanced animation concepts should be necessary for immediate use of the system.

D2. Enable Medium-fidelity Rapid Exploration: Manually posing the joints to create keyframes
in the professional animation software can be labor-intenstive and time-consuming. We believe
there are opportunities to develop a system which can automate this process and output medium-
fidelity motion to support rapid exploration of character animations for both immediate use and
further refinement.

D3. Support for Multiple Motions per Scene: Most animation authoring tools are able to create
a multi-character scene by editing the animation of each character and manually synchronizing
them in a global timeline. Meanwhile, there are data sources such as videos that contain multiple
movements in a single scene. An author system should take advantage of these data sources, and
enable users to leverage complex scenes with multiple individuals moving.

D4. Robust to new Videos and Data: Videos are becoming increasingly accessible and easy to
generate and publish online. A system should support capturing and processing these new videos,
and adding them into motion datasets for later use.

D5. Modularized Pipeline As machine learning and computer vision algorithms are rapidly
developing, an animation system should be modular to allow new approaches and developments to
be easily integrated into the system.

4 VIDEOPOSEVR

Based on the design goals, we designed VideoPoseVR , a video-based animation authoring workflow
that allows novice users to import videos, extract motions from videos, and intuitively visualize
and manipulate the life-size motion to animate characters in VR. VideoPoseVR has two parts: a
motion reconstruction pipeline based on the state-of-the-art deep learning approaches that outputs
a 3D motion dataset, and a VR user interface that allows novice users to intuitively visualize and
manipulate the life-size motion to animate characters in VR.
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Fig. 2. VideoPoseVR system workflow, including an offline pipeline that generates a 3D motion dataset and
a VR user interface that allows users to use the reconstructed motion to animate the characters in VR. We
create the motion dataset by 1) reconstructing the 3D motion from videos, 2) captioning the motion, and 3)
converting the motion to keyframe-based animation ready to use in VR.

4.1 Generating 3D Motion Dataset

To generate 3D motion from 2D videos, the system employs a pipeline with three steps: reconstruct-
ing 3D pose from 2D videos, captioning the reconstructed motion, and converting the captioned
motion to keyframe-based animation (Figure 2).

4.1.1 Reconstructing 3D motion from videos. We first estimate the root-relative 3D poses for
multiple persons in the video using ROMP [66], a one-stage network that reconstructs root-relative
3D poses for multiple people. Unlike most other approaches that uses a series of stages to handle the
multi-person scenes, ROMP regresses all meshes for multiple persons in one single stage, making it
robust to truncation, person-person occlusion, and environmental occlusion in the multi-person
cases, which is critical for animating characters.

The predicted 3D poses from ROMP are only root-relative (i.e. relative to the pelvis joint). In
some cases, it is important to know the absolute 3D poses (i.e. relative to the camera). For example,
to animate a group of characters dancing in the scene, it is critical to assign the 3D position of each
dancer in the video to the individual character so that when the dancers change their positions the
characters can move along the exact same path in the scene. We use RootNet [52] to estimate the
camera-centered coordinates of the human pose root by approximating the absolute depth from
the camera to the human using the ratio of the human height in the physical space and the height
in the image. We apply this approach to recover the root positions relative to the camera for all
videos that are recorded with a stationary camera.

To distinguish the motion from multiple persons across frames, we track each person’s 3D pose
with a unique ID by associating the 3D pose with a tracked 2D pose. We detect 2D poses using
AlphaPose [20] and track the keypoints of 2D pose using PoseFlow [78]. The detected 2D poses are
tracked across frames with a unique ID for each person in the video. We filter the 2D keypoints
and 3D poses with the 1 Euro filter [11] for temporal smoothing. For each 3D pose, we project the
3D joints onto the image and compute the error between the projected 3D joints and detected 2D
joints in each frame. We associate each 3D pose with its corresponding 2D pose by finding the
nearest joint (Figure 3) and use the tracked 2D pose to track 3D pose across frames for each person.

4.1.2  Captioning 3D motion. The reconstructed 3D motion from the video is unclassified without
labels. Users have to manually identify and label the motion to use it as animation. This can be
tedious when importing a large number of videos. Furthermore, there might be different types of
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Fig. 3. Tracking the 3D poses of multiple persons in the scene. We associate tracked 2D pose (Left) with 3D
pose (Right) to distinguish the motion from multiple persons across frames (Mid).

motion presented in one video at different time stamps. Therefore, we caption the 3D motion to
allow users to search for a motion from the imported videos without manually annotating them.

We use the Contrastive Language-Image Pre-training (CLIP) [60] model to generate text snippets
of the videos. The CLIP model connects text and images. It provides simple textual image descriptions
for flexible zero-shot classification on arbitrary image datasets. It was trained on a multimodal
dataset of 400 million image-text pairs to associate images with natural language descriptions.
To generate captions using CLIP, we first sample one frame of a video every second and use the
pre-trained CLIP vision transformer (ViT-B/32) to generate a text snippet for each frame. The text
is represented as a feature vector and stored along with its corresponding video and reconstructed
motion so that the text is paired with the motion. Generating text per second for each video can
result in a large number of captions. To allow users to search efficiently at runtime, we use FAISS
[32] to expedite the similarity search by building an index object that encapsulates all the feature
vectors of captions. FAISS uses indexing methods built upon product quantization [33] and supports
efficient comparisons between the query and stored vectors.

When users search for a motion at runtime, we first use CLIP’s text encoder to compute the
query vector. Then we use FAISS to get the k nearest neighbors by comparing the query vector
and stored vectors. For each video, we compute a mean score of the cosine similarities between
the query vector and stored vectors for all the sampled frames in the video (Figure 4). The k most
relevant videos are returned by sorting the similarity scores of all videos and choosing the k highest
ranked videos.

4.1.3 Converting raw motion data to keyframe animation. Similar to the motion captured data, the
reconstructed frame-by-frame 3D motion data is difficult to modify. In order to allow users to apply
the motion data to characters as animations, we convert the raw motion data into editable keyframe-
based animations by sampling the original motion data at 30 fps. To ensure the smoothness of the
sampled motion, we add a new keyframe if the difference in the joint rotation and position between
the current frame and the last frame is above a fixed heuristic threshold of 0.1% position error and
0.15% rotation error.
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Fig. 4. An example of searching for a motion of playing tennis. We use the text encoder of the Contrastive
Language-lmage Pre-training (CLIP) model [60] to compute the query vector. For each video, we compute a
mean score of the cosine similarities between the query vector and stored vectors for all the frames sampled
per second in the video. We get the k most relevant videos by comparing the average similarity scores of all
videos.

Search Panel

1. Search with keyword 2. Browse mini-workspace 3. Adjust workspace 4. Select life-size motion 5. Apply the motion

Fig. 5. The search and workspace panel: users can search for the motion with keywords and apply the motion
to characters.

4.2 VR User Interface

To enable users to quickly prototype VR character animations using the reconstructed motion
dataset, we develop a VR user interface that allows users to search, preview, apply, and customize
the motion extracted from videos.

4.2.1 Search for the motion. Users can type in the keywords or descriptions of the motion with
a virtual keyboard (Figure 5 (1)). Once finding relevant motion, the system renders a miniature
workspace that displays both the video and the reconstructed 3D motion for each subject in the
video (Figure 5 (2)). The reconstructed motions are synchronized with the video playback and the
global movements are scaled to fit the mini-workspace. Users can quickly preview and navigate
through different video-motion by clicking the next or previous buttons in the mini-workspace.

4.2.2  Extract and apply the motion. After finding a desired motion, users can select and place it in
the current environment to visualize a life-size motion from different perspectives. The placement
of the life-size workspace can be adjusted to avoid occlusion with the environment (Figure 5 (3)). To
apply the motion to a character, users can select the motion from the workspace and place it onto
the character (Figure 5 (4-5)). The system will automatically re-target the motion to the skeleton
rig of the selected character.
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Timeline Panel

4. Synchronized characters with video

Fig. 6. The timeline panel: users can edit the timeline of an applied motion and synchronize multiple motions
with the video timeline.
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Fig. 7. The blend and path panel: users can combine motions from videos and define a motion path of the
animated character.

4.2.3 Customize the motion. VideoPoseVR supports several functions to help users further customize
their character animations by trimming the animation and adjusting its playspeed. They can also
apply the reconstructed root motion (i.e. the absolute 3D position in the video) to the character
if applicable. They can manipulate the character by translating and rotating it. Users can access
these functionalities via a virtual window after selecting the character and the button on a ring
menu (Figure 6 (1)). The customized characters can be synchronized with the original 2D video to
provide the context and details of the activity. The synchronization can be useful when users need
to further refine the reconstructed motion by examining the difference and add details such as the
facial expression of the persons in the video or the objects involved in the motion. To synchronize
the characters with the video, users can select the characters that are animated with the motion
from the same video, and then click a button on the virtual window (Figure 6 (3)).

4.2.4 Combining the motions from different videos. Users can combine the motions from different
videos with a customizable body mask that specifies which parts of the body motion they want to
apply. For example, users can create a combat running animation by combining a boxing animation,
performed on the upper body of the character, with a running animation on its lower body (Fig-
ure 7 (1)). Users can first search for a running motion and define a lower body mask. Then they can
search again for a boxing motion and define an upper body mask and animate a character with the
generated combat running animation.

4.25 Defining the motion path. For the videos recorded with stationary cameras, VideoPoseVR can
infer how the persons in the video move within the recorded 3D environment and reconstruct the
root motion (i.e. the absolute 3D position in the video). With the root motion applied, the animated
character can move in the virtual environment along the same path as in the original 2D video
instead of playing at a fixed position. However, for the videos that are not recorded with stationary
cameras, we do not have the root motion. In this case, VideoPoseVR supports users to create their
own motion path by dropping points in the scene to fit a spline curve as the motion path. For
example, users can specify the waypoints on the ground to define the motion path for a running
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Fig. 9. Examples of the motion dataset with 3D motion reconstructed from 161 online videos consisting of a
variety of human activities including tennis, walking, yoga, volleyball, performance etc.

animation (Figure 7 (3-4)). After applying the motion path to the animated character, users can
adjust the speed of the movement and rotate the character to refine the animation.

4.3 Implementation

Our proof-of-concept prototype consists of three parts: a
client-side VR application, a server-side web application,

. . Python Web server Motion dataset
and a motion dataset (Figure 8). 3

CLIP model . g
FAISS Library FAISS index file

4.3.1 Python Web Server. We developed a Python web FESTAL A i
server with Flask on Google Colab. We used open source colab i Rt

libraries of ROMP [66], RootNet [52], AlphaPose [20], ’ \ -------------------------
User query

Video and
motion data

and PoseFlow [78] to implement the pipeline of creating
motion datasets from videos directly on Google Colab.

Users can directly run the prototype on their browsers Qunlty/®\ """""""""""""""""
without the need of powerful computers and setting

up complex environments. We also integrated the pre-

training CLIP model [60] to generate captions for the mo-  Fig. 8. Implementation of the VideoPoseVR
tion and the FAISS [32] library to enable efficient search- prototype, including a Python web server, a
ing by generating FAISS index files stored in the motion client VR application, and a motion dataset.
dataset. Client applications can connect to the Python

web server through REST API to search and retrieve the

video-motion data path. When users send a search query from a client application, the server first
uses the CLIP model to compute the embedding of the user query, and then uses FAISS indices to
compute the similarity scores with the CLIP embeddings of all videos. After determining the five
nearest neighbors (i.e. videos) of a user query, the server returns the five video-motion data paths
to the client application, which are used to retrieve the video and motion data from the motion
dataset.

Video and Video and
motion data path motion data path

Client-side VR application

4.3.2 Client VR Application. We implemented the client VR application with Unity. The client-side
VR application connected to the Python web server with REST API. We converted the motion
data into Unity’s AnimationClip format and used Unity’s Mecanim animation system [70] to
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implement the features to modify the humanoid animations (timeline and body mask). The current
implementation supports three different skeleton rigs including the default Mecanim humanoid in
Unity, Mixamo, and Microsoft Rocketbox avatar [25]. Within the VR application, users can call out
a ring menu (Figure 6) and select functionalities such as searching and editing the motion using
the joystick on the left controller. They use laser pointers attached to the controllers for selection
and teleportation. They can select content by pressing the index trigger and grab Ul panels and
models using a grip button on the controllers.

4.3.3  Motion Dataset. We created a default motion dataset (Figure 9) with 161 online videos col-
lected from Storyblocks [65] consisting of a variety of human activities including tennis, basketball,
walking, yoga, etc. We store the reconstructed motion along with the videos and FAISS index files
on an Amazon S3 server. Users can upload their own online videos and run our prototype to expand
the motion dataset without annotating the videos.

5 EVALUATION

Our interactive VideoPoseVR prototype provides a new way for content creators to author character
animations in VR. The goal of the study was to evaluate the feasibility of this authoring approach
as well as gather initial feedback of the prototype. We collected subjective measures and qualitative
observations.

5.1 Participants and Procedure

Ten participants (9 males and 1 female) between 29 and 46 years old (averaged 35.2 years) were
recruited from within the institution and participated in the study remotely. We asked participants
to rate their expertise in VR and 3D animation from 1 (novice) to 5 (expert) respectively. Respondents
had an average score of 3.6 for VR, and 1.8 for 3D animation. All participants provided informed
consent and were compensated with a $30 USD-equivalent gift card for an 1-hour study. The study
was guided and supervised remotely by an experimenter via a video conference call.

Participants used their own VR devices (Oculus Quest 1 or 2) to run a VR application developed
in Unity. We used a virtual park scene as the default virtual environment (Figure 10-study scene)
and added virtual characters from Mixamo and Microsoft RocketBox avatar [25]. These characters
are all in static T-pose in the scene and ready to be animated.

Before the evaluation began, participants were guided to set up the experimental environment
by removing potential obstacles within their personal space in a standing position. The evaluation
began with an introduction of the prototype. Participants were shown the VideoPoseVR interface
and basic interactions (pointing, rotating, and teleporting) with a video for 10 minutes. Then they
were given four tasks (Figure 10) to complete, each requiring the use of at least one feature in
the prototype with an increasing level of difficulty across tasks. Before they conducted each task,
participants were shown a video walkthrough illustrating the use of features in the task. The entire
process of four tasks with video walkthrough last up to 30 minutes.

After the study, participants completed a questionnaire followed by a semi-structured interview.
The questionnaire asked participants to rate individual features and overall experience on a Likert
scale from 1 to 7 with 12 questions (Q1-12) shown in Figure 11. In the interview, participants were
asked what they liked and disliked about the system, how they perceived the ownership rights of
the extracted motions from videos, and any other comments about the overall experience, which
lasts approximately 15 minutes.
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ID\/lottlont | Search for motion I | Extract and apply motion I | Customize motion with video |
atase!

Edit video timeline
Sync with video context

Combine multiple videos

Fig. 10. Tasks used in the study for participants to author character animations in VR. They can search,
extract, apply, synchronize, and combine 3D motions from online videos.

5.2 Study Tasks

Search and apply motion. Participants searched for a tennis motion, previewed videos in the
mini-workspace, selected and placed a life-size motion in the scene. They created animation by
grabbing the life-size motion and applying it to the character by selecting the ring icon beside the
character.

Edit motion timeline. After applying the motion, participants trimmed the motion with the
timeline sliders and adjusted the play speed in the timeline window.

Synchronize animation with the video. Participants searched for a video with a keyword of
their choice that contains multiple motions and applied motions to characters. They selected and
synchronized animated characters with the video background to provide context information of
the motion.

Combine motions from two videos. Participants searched for a running motion and applied
it to selected lower body mask in the blending window. They searched again for an upper body
motion with a keyword of their choice, applied it to the upper body mask, and used the blended
motion to animate a character in the scene.

5.3 Results

Overall, VideoPoseVR was rated positively (Figure 11) for both the individual features and user
experience. Participants found it easy to use and learn (Q8-9). All participants completed the
first three tasks and eight participants completed all four tasks within the 30 minutes of time
limitation. During the interview, participants provided positive feedback and were impressed with
the capability of using online videos to animate VR characters.

1. Search for motion. Participants found it easy to find the desired motion (Q1) from the video
library: “when I searched, I think there was a sufficient amount of variety in the videos that I wanted
to use (P6)” They found it useful to have a mini-workspace (Figure 10 (a)) to preview the motion
with the video background (Q2). Two participants also explicitly mentioned it as: ‘I like when I
search and then I can see the video as well as the 3D character that is already performing the actions
from the video (P2)”.
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(Q1)easyto find
(Q2) useful mini-workspace

Search for motion

(Q3) useful life-scale workspace
(Q4) easyto extractand apply
(Q5) easyto edittime

(Q6) easyto sync
(Q7)easyto blend
(Q8) easyto leamn

Extract and apply motion

Customize motion

(Q9)easytouse
Overall (Q10) able to create as intended
(Q11) satisfied with motion quality

(Q12) satisfied with creation ]
Strongly EEE m Strongly Not ified
Agree Disagree ot specitie

Fig. 11. Participants’ rates on the usability of VideoPoseVR from -3 “Strongly Disagree” to 3 “Strongly Agree”.
They reported answers on the questions for features in the VideoPoseVR interface, including (Q1-2) searching
for motion, (Q3-4) extracting and applying motion, (Q5-7) customizing motion, and (Q8-12) the overall
experience. Overall, we found most features were rated positively by participants.

2. Extract and apply motion. Interestingly, participants did not tend to value the life-size
workspace (Q3) as much as the mini workspace (Q2). Two participants further commented that the
life-size workspace may take additional visual real estate and sometimes block their view, causing
problems with navigation and applying the motion to VR characters: “you placed the scene with the
video and the avatar down, that sometimes I was trying to figure out, like, how can I move around it?
could actually be interesting to avoid blocking the view (P1).” “And it was a little bit confusing because
it’s like, Oh, I have to make sure that if I placed them, I actually placed them properly (P2).”

3. Customize motion with video. Participants were successful in customizing the motion
extracted from the video of their choice, including editing the timeline (Q5) and synchronizing
multiple animation timelines with the video (Q6). Two participants mentioned that they liked the
blending feature: ‘T liked the blending the most. I think actually it’s not something that you can do
easily today in a 3D digital content creation too (P9)”. Two participants encountered technical issues
in Task 4 (blending motions) in time (app crashed on their devices) and were not required to provide
answers for Q7 (Figure 11).

6 DISCUSSION

In building VideoPoseVR , we strove to meet a set of goals which motivated our design and im-
plementation choices. Overall, the system met these goals, and was able to create an accessible
workflow for novice users to find, modify and apply animations. We revisited the design goals and
discussed opportunities and concerns raised in the study.

6.1 Revisiting the Design Goals

D1. Accessible to Novices. One of our design goals is to lower the barrier for non-expert
animators (e.g. researchers, content creators) to engage in prototyping VR content with character
animations. Thus, instead of letting users pose the virtual character or perform the motion to create
animation from scratch, VideoPoseVR leveraged reconstructed 3D motions from videos to allow both
professionals and non-expert users to quickly prototyping character animation in VR. Participants
found it easy to follow the exemplary workflow. Nine out of ten participants mentioned that the
system was easy to use and learn. Three of them further commented that the system was friendly
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to everyone: “This felt extremely lightweight, intuitive, and it felt like anybody could pick it up (P8)”.
“This would empower content creation. Everyone can become a 3D creator (P9)”. Three of them also
mentioned this approach has the strength of leveraging the huge amount of videos online, turning
them into animation assets available for content creators: “there are so many videos of people either
like explaining how to do certain movements or videos of amateur and professional sports, uh, that you
can use to create motions that are more realistic (P1) .

These encouraging findings support our motivation and design goal of enabling content creation
in VR for everyone. In addition, four participants mentioned that practitioners could use this
technique for quick prototyping without a complex setup to collect animation resources: “so this is
probably very good for creating like a quick prototype. There are like repeated same set of actions. And
I don’t want to create, um, just have somebody record a video, and then just do it. But that shouldn’t
take you more than 30 minutes or 40 minutes max. Like you have the video and then if your system is
able to get those motions out of video, that is way more quicker (P5)”.

In contrast to the ease of authoring video-based animations, we found that participants struggled
with the controller’s button-mapping. We observed participants frequently asked which buttons to
press as well as the order of pressing them. Three participants commented that memorizing the
controller mapping could be difficult for novice users: “it was a bit of a mental mapping exercise
I had to do with which button do I use for what, and how do I select something and then release
it again (P1)." “One of the things that I look at is like, how to assign buttons to certain things and
triggers to certain things? And how long does it take for that to become comfortable, but then you
may be jumping to another app, and the controls are totally different? (P10)". These comments could
potentially explain the lower ratings for Q5 and Q7 (Figure 11), which require several buttons being
pressed sequentially. While this problem could be possibly alleviated by providing an input mapping
diagram overlaid on the controller in the scene, it is still a potential barrier for novices by having to
frequently call out the mapping diagram that could interrupt the workflow. We expect such issues
could be addressed in the future by bringing standardized desktop input such as keyboard and
mouse with user familiarity into the virtual environment.

D2. Enable Medium-fidelity Rapid Exploration. In general, we found that participants
were mostly satisfied with the motion quality (Q11 in Figure 11). Two participants mentioned the
extracted motions could be further improved: “one thing I found was, the actions may not be one
hundred percent accurate. I noticed that in one of those scenes where in playing volleyball, the hands
were like a bit separated from each other (P5)”, and “sometimes the avatars’ feet were kind of below
the ground. So I guess that if they can react to the ground that would make it more useful (P9)”. Two
participants also mentioned that the extracted motion can serve as a starting point for further
refinement: : “..take a video and then you can concentrate on fine tuning it (P5)”, and ‘I can start from
somewhere midway and then edit it (P3)”.

The goal of VideoPoseVR is to support animating characters in the early stage of VR prototyping.
Instead of replacing the existing animation tools, users could use VideoPoseVR to explore initial
animations of their VR experiences and refine important animations later on with their preferable
animation tools. We see the potential of combining VideoPoseVR with existing VR-based animation
authoring tools such as PoseMMR [57] to further refine the motion in VR and expedite the workflow
of authoring VR animations.

D3. Support for Multiple Motions per Scene. With most of the current animation tools such
as Blender [5], users create a multi-character scene (such as team sports) by editing the animation
of each character and manually adjust their global timing to synchronize the motion, which makes
it time-consuming to prototype a scene containing multi-person human activities. . To overcome
this limitation, we adopt the state-of-the-art 3D pose estimation approach in VideoPoseVR to extract
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multi-person motions. The timelines of these motions are inherently synchronized and therefore
users do not need to manually synchronize them. During the interview, two participants mentioned
that they liked the synchronization feature: “there was a video playing behind and then all of these
four avatars were positioned the same way as it was in the video. They were trying to do the exact
same set of movements as it was happening in the video. So that was the best part (P5)”.

D4. Robust to new Videos and Data. Although we created a motion dataset with 112 online
videos consisting of a variety of human motions, VideoPoseVR allows users to add their own videos
and motions to the motion datasets so that they can search and retrieve their preferable motions
when animating virtual characters. To achieve this goal, we leveraged open source computer vision
techniques and implemented the pipeline of creating motion datasets from videos directly on
Google Colab. Thus, users can directly run the prototype on their browsers without the need for
powerful computers and setting up deep learning environments. Users can add new motion to the
dataset by simply uploading their videos to Google Colab. However, since certain Unity Animation
APIs can only be executed in the Unity Editor, we note that users still need to manually complete
the step for converting raw motion data to keyframe animation in Unity and uploading them to
Google Colab. Although it’s possible to realize a full automatic pipeline by implementing custom
keyframe animations, it’s beyond the scope of the current paper.

D5. Modularized Pipeline. As 3D human pose estimation technology continues to evolve, it is
important to make the VideoPoseVR prototype generalizable and extendable so that the modules
in the prototype can be replaced as advances are made. We achieved this by dividing the pipeline
of converting video to animation assets into independent modules. With this approach, as new
developments are made in computer vision, a single module can be replaced within the pipeline
without disrupting the functionality of VideoPoseVR .

6.2 Motion Ownership

During the study, seven out of ten participants raised concerns on the ownership of copyright on
the extracted motions. Within them, four participants felt that video owners would require credits
if motions were extracted from the videos: “Maybe I had to pay them money because they’re skilled
professionals....the reason why you get training for 15, 20 years in your life when you’re young is just
to learn those, the physics of the movements of your body parts that makes motion so special. So that’s
the reason why I would definitely want to credit (P6)". “there’s gotta be some sort of connection to the
original piece (P10)". “you could actually have like some revenue. Anyone can do it and if they pay
me 10 cents or something (P9) ". Three participants mentioned it would depend on the content and
require explicit consent: ‘T guess it depends on the video... if it’s like a video that’s somebody took of
me not necessarily for motion extraction, then I'm a little bit iffy about that because I didn’t mean to
have my video to be extracted (P2)". “it would be good to give explicit consent for that depending on
how it’s used (P1)".

These concerns voiced in the study point to possible abuse of the extracted motions without
proper consent and monetary credit to the original video owners. As the techniques of motion
reconstruction come closer to practical use, future work is required to discuss what can be extracted
with credit and consent and how to ensure the extracted motions can be traced back to the video
owners.

6.3 VR vs Desktop

While it is possible to use the video-to-animation authoring workflow in the desktop environment,
we found the workflow to be more beneficial in VR for two reasons. First, creating animations for
VR has been found tedious with excessive context switches between VR and desktop to review
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the edits [4, 7]. For collaborative virtual world applications with an emphasis on player creation
(such as Recroom [63] and Horizon Worlds [49]), casual users without animation expertise need to
animate their VR scenes. It would be difficult for them to learn commercial animation software and
export their creation into VR. The intuitive workflow of VideoPoseVR can be beneficial for creators
to author their VR experience with accessible online videos in a single environment. Second, the
video-to-animation workflow has the opportunity to enable novel interactions by integrating with
the 3D input of VR. In the searching stage, we use a keyword-based approach to demonstrate the
workflow. It is possible to query by directly demonstrating the motion [62], which can be useful to
specify a particular type of movement, such as a backhand ground-stroke in tennis, resulting in a
coarse-to-fine querying approach that users can first use keywords to retrieve a motion type and
refine the search results by demonstrating it. It is also possible to combine the demonstrated motion
with the motion in the dataset to transfer a dancing style [82] or complement the reconstructed
motion with deficiency. In the refinement stage, as two participants suggested that the extracted
motion can serve as a starting point for further refinement, VideoPoseVR can be combined with
existing VR animation tools [7, 73] that allow users to directly manipulate joints in 3D.

7 LIMITATIONS AND FUTURE WORK

While most of the motions reconstructed from ROMP [66] have reasonable quality in our dataset,
we found that the extracted motions can sometimes become unreliable when people in the video
are too small or when the person-person occlusions are severe. Thus, we expect future advance-
ment in 3D motion reconstruction can improve the motion quality. Our prototype reconstructs
motions individually without considering the similarity between them. To enable gallery-based
animation authoring, we expect future development can merge similar motions (such as running)
to complement motions with deficiency caused by the occlusion and refine the motion quality.

The CLIP’s zero-shot classifier allows users to create motion datasets without annotation and
further enables semantic search. However, it still has poor generalization to scenes not covered in
its pre-training dataset and it’s sensitive to wording or phrasing. While a formal study to evaluate
the performance of our approach in some video benchmarks would be helpful, it’s beyond the scope
of the current paper. In the future, we plan to extract other metadata from the online video (e.g.
titles and categories) to improve the search performance and also explore multimodal techniques
to help users find the right motions such as searching by performing the motion.

We developed VideoPoseVR to demonstrate a video-to-animation authoring workflow in VR. The
interface contains elements from both video and animation interface such as the video playback
controls (Figure 6(1)) as well as the body mask (Figure 7(1)) inspired from the Avatar Mask in
Unity [71]. For casual users like prosumers, these functionalities allow them to animate their
VR scenes without domain knowledge in animation. For professional animators, the animations
created by VideoPoseVR are still not suitable for final production compared to commercial animation
software. In particular, we implemented the timeline editing operations but not the keyframe
editing operations for adjusting the position, orientation and scaling of pose. Since there are several
VR applications that support keyframe editing [7, 51, 56], we plan to integrate VideoPoseVR with
existing VR animation tools for further refining motions in the later stage of prototyping such as
manipulating the character pose or real-time puppeteering of the character. Future work is required
to compare the VR-based authoring workflow with traditional animation software and understand
the different needs of novice and expert users.

8 CONCLUSION

We presented VideoPoseVR , a video-based animation authoring approach using online videos
to author character animations in VR. It utilized the state-of-the-art deep learning approach to

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. ISS, Article 575. Publication date: December 2022.



VideoPoseVR: Authoring Virtual Reality Character Animations with Online Videos 575:17

reconstruct 3D motions from online videos, caption the motions, and store them in a motion dataset.
Through VideoPoseVR , users can search, extract, apply, synchronize, and combine 3D humanoid
motions from existing online videos to animate virtual characters in VR. We conducted a user
study to evaluate the feasibility of the video-based authoring approach as well as gather initial
feedback of the prototype. The results suggested that VideoPoseVR was easy to learn for novice
users to author character animations in VR. Participants also suggested using VideoPoseVR for rapid
exploration of animation ideas and raised concerns on the ownership of motion data extracted
from the original videos.
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