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Embodying  Physics-Aware  Avatars  in  Virtual  Reality  
Yujie Tao Cheng Yao Wang Andrew D. Wilson
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Figure  1:  (a)  When  a  user  is  embodying  a  self-avatar  in  virtual  reality,  it  usually  follows  a  one-to-one  mapping  of  their  motion
While  this  preserves  visual-proprioceptive  congruence,  a  determining  factor  for  embodiment,  it  also  leads  to  unnatural  behavior,
such  as  the  body  passing  through  objects  in  the  VR  environment.  (b)  With  physics  correction,  the  self-avatar  developed  motion
that  didn’t  match  the  user  input:  in  this  case,  avoiding  the  poles  when  contacting.  We  fnd  that  rather  than  compromising  the
sense  of  virtual  body  ownership,  these  types  of  small  deviations  improve  the  embodiment  of  users  in  VR.  

.  
  
  
  

ABSTRACT 
Embodiment                  
stronger  when  there  is  a  high  degree  of  alignment  between  th
user’s  and  self-avatar’s  motion.  However,  one-to-one  mapping  b
tween  the  two  is  not  always  ideal  when  user  interacts  with  the  vi
tual  environment.  On  these  occasions,  the  user  input  often  leads  t
unnatural  behavior  without  physical  realism  (e.g.,  objects  penetra
ing  virtual  body,  body  unmoved  by  hitting  stimuli).  We  investigat
how  adding  physics  correction  to  self-avatar  motion  impacts  embo
iment.  Physics-aware  self-avatar  preserves  the  physical  meaning  o
the  movement  but  introduces  discrepancies  between  the  user’s  an
self-avatar’s  motion,  whose  contingency  is  a  determining  facto
for  embodiment.  To  understand  its  impact,  we  conducted  an  in-la
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toward an avatar in virtual reality (VR) is generally 
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study (n = 20) where participants interacted with obstacles on their 
upper bodies in VR with and without physics correction. Our re-
sults showed that, rather than compromising embodiment level, 
physics-responsive self-avatar improved embodiment compared to 
no-physics condition in both active and passive interactions. 

CCS CONCEPTS 
• Human-centered computing; • Human computer interac-
tion (HCI); • Interaction paradigms; • Virtual reality; 
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1 INTRODUCTION 
Virtual  reality  (VR)  enables  the  user  to  embody  a  virtual  body  
beyond  their  physical  one.  With  the  proliferation  of  portable  VR  
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hardware that tracks user’s head and hand positions, one can easily 
control a virtual body when they put on a head-mounted display 
and look down to see their body being substituted by an avatar [85]. 
The illusory ownership of an avatar is known to improve presence 
in VR [43, 90], foster implicit learning [82], and infuence emotional 
response [83, 95]. Embodiment can also reduce implicit biases [65] 
and empower behavioral change [80]. To achieve the embodiment, 
visual-sensorimotor contingencies (i.e., synchronizing the user and 
self-avatar motion, which can be felt as having control over the 
avatar), visual perspective (i.e., frst-person point of view), and 
appearance (i.e., visual features) of the virtual body are all important 
contributing factors [25, 43, 57, 84]. 

Past work uncovered determinants for embodiment in virtual 
reality, but the relationship between the self-avatar and the environ-
ment is often under-explored. Rather, we argue that the interaction 
between virtual body and the environment remains an important 
reason why the embodiment illusion might break. In the physical 
world, our senses can inform us of any interaction (wanted or un-
wanted) of our body with objects around us, and we develop an 
awareness of the environment through manipulating objects and 
observing the physical interactions. In VR, our avatar is a sense-less 
robot, and our understanding of interaction with the environment 
is heavily dependent on visual and audio cues rendered from the 
headset. Thus, in our interaction with a VR environment, one-to-
one mapping between the user’s and self-avatar’s motion often 
leads to behavior that lacks physical meaning, such as an unmoved 
virtual body when hit by obstacles or objects penetrating into the 
virtual body, as shown in Figure 2. 

Figure  2:  Examples  of  unnatural  behavior  due  to  one-to-one  
mapping  of  user’s  motion.  (a)  Hand  penetrating  into  objects  
when  contacting.  (b)  Body  unmoved  when  being  hit,  such  as  
by  a  pet.  

While haptics is great way to augment the physical experience 
of our body inside VR and ultimately improve embodiment [33], 
we argue that adding physics correction to self-avatar motion visu-
ally could already improve the embodied experience. The space of 
physics simulations for VR and graphics has been widely explored 
for cloth [42], fuid [14] and non-player characters [21]. There is 
also a growing interest in industry and beyond to add physics to self-
avatars, such as Hand Physics Lab [2] and Boneworks [1]. However, 
its impact on embodiment is still under-explored. In fact, correct-
ing self-avatar motion when in contact with objects in VR, though 
preserving the physics relationship between the virtual body and 
the environment, creates a discrepancy between user input and 
the self-avatar behavior. We know that avatars do not need to be 
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in perfect alignment with the self-motion, and users might try to 
match with the avatar motion [31], but too much divergence could 
trigger body semantic violations [62]. Do users still feel embodied 
with physics-responsive self-avatars that develop physically correct 
behavior but go beyond user input? What is the users’ preferred 
range of physics correction for their self-avatars? 

To investigate those questions, we conducted a within-group 
user study (n = 20), where participants’ upper bodies interacted with 
obstacles in VR, both passively (hit by a ball) and actively (walking 
toward obstacles). Participants experienced each interaction type 
with physics-aware and no-physics self-avatar respectively. The 
results showed that participants developed a higher embodiment 
level with physics-aware self-avatar in both passive and active inter-
actions. We also uncovered the preferred level of physics correction 
for the passive interaction task. 

Our key contributions are the following: (1) We made the frst 
step to study how physics-aware avatars impact on subjective em-
bodiment level in virtual reality; (2) We compared physics correc-
tion with one-to-one mapping of user’s motion in both active and 
passive interactions; (3) We uncovered the thresholds of user pref-
erence to physics corrections in passive interaction; and (4) We 
discussed implications of our fndings and suggested directions for 
future work. 

2  RELATED  WORK  
In this work, we move beyond one-to-one mapping between user 
and self-avatar motion and remap user input with consideration 
of the surrounding virtual environment. This means our interac-
tion with the self-avatar aims to have both body awareness, and 
environment awareness, according to the framework from Reality-
Based Interaction [39]. Thus, our research draws inspiration from 
prior work on embodiment in VR, motion remapping, and physics 
simulations. 

2.1  Embodiment  and  Illusion  of  Virtual  Body  
Ownership  

The sense of “embodiment” has often been described as a somatic 
form of self-consciousness [52]. The sensorimotor state of the body 
plays an instrumental role in information processing [32, 47]. To ma-
nipulate body ownership, a classic example is the so-called “rubber-
hand illusion” [13]. When a rubber hand is brushed synchronously 
with the participant’s own hand, they perceive the prosthetic hand 
as part of their body [52, 77, 89]. In a virtual environment, the illu-
sory ownership of an avatar can modulate the user’s perceptual ex-
perience of their own body, changing their body image [70, 95], their 
distance perception, [29] and even their haptic accuracy [30, 56, 58]. 
Active self-avatars were also found to improve cognitive perfor-
mance such as letter recall [86]. Moreover, users are able to embody 
self-representations with drastically diferent body shapes, such as 
giants [6] or even non-humanoid avatars [48, 69, 94]. 

To induce the sense of embodiment toward an avatar in VR, 
there are three determining factors: sense of location (i.e., visuospa-
tial perspective), sense of agency (i.e., synchronous visuomotor 
correlations), and sense of body ownership (i.e., self-attribution 
of a body) [43]. The visual appearance of an avatar is a crucial 
contributing factor to sense of body ownership [50]. The match of 



             

         
           

             
         

          
          

           
            

           
       

         
          

      

         
        

         
      

         
             

          
          

         
          

            
           

        
       

        
          

           
          

           
           

           
           

           
            
      

          

        
         

        
          

          
        

       
        
         

           
          

                
ment  and  other  critical  aspects  of  the  VR  experience,  we  conducted  
a  with-in  group  user  study.  Each  participant  was  asked  to  interact  
with  virtual  objects  while  embodying  a  physics-responsive  avatar  
and  a  no-physics  avatar  respectively.  We  studied  this  duality  in  both  
active  and  passive  interactions,  correspondingly  with  and  without  
voluntary  movement  from  the  participants  [17].  In  both  interaction  
types,  we  focused  the  experiments  on  upper  body  of  the  avatars,  
which  are  better  tracked  in  commercial  VR  systems.  Embodiment  
questionnaire  [64]  was  followed  after  each  task.  

We  hypothesized  that  (H1)  embodying  physics-aware  self-avatar  
would  improve  the  embodiment  level  in  active  interaction;  (H2)  par-
ticipants  would  prefer  physics-aware  self-avatar  over  no-physics  
self-avatar  in  passive  interaction;  (H3)  physics-responsive  self-
avatar  would  be  regarded  as  more  embodied  than  no-physics  one  
but  over-reaction  in  the  physics  on  the  self-avatar  motion  could  
drop  embodiment  level  in  passive  interactions.  

This  study  was  approved  by  our  Institutional  Review  Board  at  
Microsoft  Research.  

                  
underwent  the  same  conditions  but  in  a  counterbalanced  order.  
Participants  stood  in  front  of  a  mirror  in  VR,  and  after  a  short  
period  of  free  interaction  to  get  familiar  with  the  self-avatar  and  
generate  embodiment  [37],  they  interfaced  with  two  conditions:  
physics-aware  self-avatar  and  no-physics  self-avatar  (baseline).  We  
designed  two  diferent  interaction  types  to  investigate  the  impact  of  
physics  correction.  In  the  active  interaction,  participants  were  asked  
to  walk  through  poles.  In  the  passive  interaction,  participants  were  
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clothing and skin tones between user’s and self-avatar’s body infu-
ences the strength of virtual body ownership [57] while a replica 
of human likeness that is close but not good enough could lead to 
the uncanny valley efect [53]. However, when investigating into 
relative contributions of the appearance of the avatars in inducing 
embodiment to a virtual body, avatar appearance was found of 
less importance than the other two factors, control and point of 
view [25]. It was shown that with a high degree of spatial over-
lap between real and virtual bodies, the sole efect of congruent 
visuo-proprioceptive cues is sufcient for inducing embodiment 
in VR [57, 84]. Beyond boosting embodiment, synchronizing body 
movement between participants and avatars also result in sense of 
presence, while reducing simulator sickness [45]. 

2.2  Remapping  of  User  Movement  in  VR  
While mirroring user movement to avatar movement helps preserve 
embodiment, breaking the mapping, or remapping, could introduce 
new interactive experiences. Powered by the dominance of vision 
over proprioception [15], researchers developed re-targeting tech-
niques to convert daily objects [10, 38], robot-actuated physical 
props [28], or even user’s own body [22] to serve as haptic proxies 
in VR. Varying the displacement of visual representation of the 
hand could also induce pseudo-haptics such as force and weight 
perception [20, 40, 74–76]. By amplifying or miniaturizing user mo-
tion [46], remapping further allows users to interact with distant 
objects [41, 71, 92] or enjoying haptics on a miniature scale [91]. 
Remapping [19, 24] or stylizing [7] user movement also allows users 
to reduce fatigue while preserving embodiment. Remapping user 
motion in VR has unlocked various applications. 

When considering the discrepancy between the user and self-
avatar motion due to remapping, we can summarize its impact 
into three categories: (1) When the discrepancy is small (e.g. less 
than 14 centimeters), users do not notice/can tolerate the diference 
and its impact on embodiment is limited [92]. (2) The discrepancy 
generates a self-avatar follower efect, by which the users try to 
reduce the distance between the two bodies by changing their own 
body position and thus correcting to match the avatar motion [31]; 
(3) When discrepancy is too large, it creates a strong disembodiment 
response, and even a body semantic violation [62]. Li et.al [49], for 
instance, investigated how user-avatar movement inconsistency 
afects its noticeability and sense of body ownership in VR. 

2.3  Introducing  Physics  to  Self-avatar  Motion  
Beyond  User  Input  

Physics-simulated characters have been widely explored in 3D 
graphics community [9, 93]. Diferent from kinematic control, which 
heavily relies on motion capturing data, physics-based character de-
velop motions from the result of physics simulation processes [27]. 
Rag-doll physics is commonly used in video games to simulate 
death animation for non-player characters [78]. More recently, 
researchers explored leveraging deep reinforcement learning to 
render physics characters that imitate diverse behaviors while pre-
serving response to environmental stimuli [11, 51, 67, 68]. 

We see a growing interest in adding physics to self-avatar in 
VR. An early implementation by Peinado et.al. [66] combined both 
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inverse  kinematics  constraints  and  damping  constraints  created  dy-
namically  by  the  collision-avoidance  system.  More  recently,  physics  
correction  has  been  added  to  full-body  tracking  systems  for  VR  [87]  
as  well  as  commercial  games  such  as  Boneworks  [1]  and  Hand  
Physics  Lab  [2].  While  physics-aware  self-avatar  enables  more  nat-
uralistic  behavior,  its  impact  on  embodiment  is  still  under-explored.  
Particularly,  in  order  to  preserve  its  physical  relationship  with  
the  surrounding  environments,  the  physics  correction  breaks  the  
synchronization  between  user  and  avatar  motion,  which  could  be  
detrimental  to  user’s  embodied  experience.  

Therefore,  our  work  is  also  grounded  in  prior  research  that  in-
vestigated  diferent  visual  representations  of  the  virtual  hand  when  
grasping  objects  in  VR  [16,  44,  72,  73].  Canales  et.al.  [16],  showed  
that  when  the  virtual  hand  did  not  penetrate  into  the  objects  (i.e.,  
preserving  physical  meaning),  the  participants  found  higher  own-
ership  of  the  virtual  hand.  However,  the  small  discrepancy  between  
visuals  and  proprioception  of  the  hand  is  not  comparable  to  what  
users  might  experience  when  they  embody  a  full-body  avatar  with  
physics  correction  and  receive  physical  impact  on  other  parts  of  
the  body  (e.g.,  hit  by  a  ball  on  the  shoulder).  

In  our  work,  we  specifcally  focus  on  the  impact  of  physics  cor-
rection  while  users  embody  a  full-body  avatar.  We  also  investigate  
both  active  and  passive  interactions  and  how  users  respond  to  
diferent  levels  of  physics  correction.  

3  METHODS  AND  MATERIALS  
To evaluate the impact of physics-responsive self-avatar on embodi-

3.1  Study  Design  
We adopted a within-group study design, where all participants
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Figure  3:  Active  interaction  tasks  in  our  user  study.  (a)  Participants  started  of  standing  towards  three  pillars  and  followed  
the  grey  path  in  front  of  them  to  walk  to  the  other  end.  They  were  instructed  to  ensure  their  body  was  in  contact  with  the  
pillar  on  the  hitting  point  marked  in  yellow.  (b)  No  physics  condition.  The  self-avatar’s  motion  was  mapped  one-to-one  to  the  
participant’s  motion,  and  the  pillars  penetrated  into  the  participant’s  virtual  body.  (c)  With  physics  condition.  The  self-avatar’s  
body  developed  physical  behavior  that  the  participant  did  not  input  and  reacted  to  the  metallic  pillar.  

hit by a ball. The design is inspired by prior research on the nature 
of our body being both sentient (activity) and sensible (passivity) 
in daily interactions [54]. It’s also inspired by the importance of 
touche-touchant interactions, as well as motor control models that 
show the impact of eferent signals on how we interpret the sensory 
feedback [12, 32]. 

Active interaction. In the active interaction task, participants 
were instructed to walk following a straight path (length: 2m) from 
a position remote from the mirror, and proceed toward it while 
looking at the refection of their avatars in the mirror, as shown in 
Figure 3 (a). In the meantime, obstacles in their way, in the form of 
poles hanging from the ceiling, would hit their self-avatar’s upper 
body. Participants were asked to follow the path, and pass through 
the poles where a yellow contact point is marked, ensuring the 
contact of the self-avatar and each pole. When the participants 
reach the end of the path, the pillars vanished, enabling a obstacle-
free return of the participants to the path starting position, and 
then poles would re-appear. For each interface condition (active 
physics, active no physics), participants repeated this walking task 
fve times. 

Passive interaction. Participants stood still in front of a mirror 
while a ball hit them on the upper body in VR. Each ball stimuli was 
8 kg in mass and was spawned from a location that’s 1.4 m away 
from the participants, targeting the self-avatar’s left clavicle with a 
speed of 10m/s. While all the ball properties were controlled in this 
task, participants were blind to the exact values and only saw the 
ball fying to hit them. This design aligns with how we normally 
interact with sudden stimuli in the physical environment. 

In the passive interaction task, beyond embodying both physics 
and no-physics self-avatar, we also want to study how participants 
react to diferent levels of physics correction. This is in essence a 
threshold evaluation: what is a good enough body response to the 
stimuli presented? Thus, we presented participants with a virtual 
slider, which allowed them to control the reaction of their self-
avatar to the stimuli. The slider settings enabled participants to set 

the response all the way from no physical efect (passive no physics), 
gradually increasing the body reaction, to fully knock down the 
avatar after hit (passive physics fall). 

Each muscle of the self-avatar could be simplifed as a spring 
system, with � being displacement, � being spring constant, and � 
being the spring force: 

� = −�� 

In essence, since the force is constant, the changes on the spring 
will make the avatar motion change, from an over-reaction and 
ensured fall to the foor to not moving at all. Thus, we can represent 
each physics correction on the slider as the ofset between the 
virtual body and the actual user pose. The ofset is calculated by 
the displacement between the inverse kinematics (IK) skeleton (�1) 
and physics skeleton (�2) given � joints of the avatar’s upper body, 
following prior work [49]: √ ∑ 

�� � � ��� (�1, �2) = max (�� 2)
2 

{1≤� ≤�} �,1 − �
�, 

� ∈�,�,� 

Figure 4 shows the corresponding ofset at each position of the 
slider for a standard skeleton (1.65m in height). The slider contains 
100 physics-corrected self-avatar motions ranging from 21.0 cm to 
203.0 cm ofset and one no-physics motion (0 cm in ofset). Note 
that as we calibrated the self-avatar of each participant, the exact 
ofset between physics self-avatar and user pose will vary across 
participants but follow the same trend. 

Using the slider, participants were asked to vary the self-avatar’s 
response to the ball impact and chose the response they felt as the 
most embodied. They did this twice and started from each of the 
two end points of the slider for the selection: (1) starting from the 
"completely fall down" side of the slider (passive select #1); (2) or 
starting from the "completely still", no physics movement endpoint 
(passive select #2). While the sliding starting point was determined 
each round, participants could control the slider in two directions 
(i.e. increasing or decreasing their avatar’s response to the ball) 
during the selection process. There was no time limit we put on 
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Figure  4:  Range  of  motion  that  the  participants  could  slide  in  the  passive  interaction  task.  The  self-avatar  pose  ranges  from  no  
movement  when  being  hit  by  a  ball  (no  physics)  to  completely  falling  after  the  hit.  In  total,  the  slider  includes  101  diferent  
motions.  We  sampled  6  of  them  and  visualized  them  in  the  fgure.  Please  see  the  supplementary  video  for  better  visualization  
of  the  reactions.  

participants for completing the selection task. Participants were 
free to experience every physics levels on the slider one-by-one or 
skip certain range of avatar reactions through continuous sliding. 

After selecting the preferred physics level starting from each 
direction, participants were asked to rate the embodiment toward 
the self-avatar motion at that point. Finally, they were asked to 
re-experience and rate the two end points of the slider (passive no 
physics and passive physics fall). 

Additional design considerations. For both active and passive 
interaction tasks, we focused on physical impact happening to the 
upper body (e.g., shoulder). We made this decision as mainstream 
consumer-level VR systems (e.g., Oculus Quest 2, VIVE Focus 3) 
track only the orientation of the user’s head and hands. Moreover, 
the view direction of users commonly aims at the height of faces. 
In our pilot studies, we experimented with physics reactions on 
the lower body too, and we can anecdotally report that the lack of 
reliable tracking was the major limiting factor that prevented us 
from studying the lower body. Compared to hand-oriented tasks, 
the upper body interactions also allow the virtual avatar to develop 
a wide range of physics responses (e.g., no movement to completely 
fall after the ball hits on shoulder). Past work has shown that visual-
proprioceptive mismatch on hand only could go unnoticed or does 
not impact embodiment if the ofset is small [92]. 

Furthermore, the use of virtual mirror allows participants to 
have a clear and constant view of their virtual body. It is equivalent 
to scenarios that require high attention from the users to their 
virtual body. Such design decision ensures participants to notice 
any physical impacts on their virtual body and focus on evaluating 
how physics correction impacts on embodiment. 

3.2  Procedure  
We invited the participants to the lab, where they flled out consent 
forms and demographic questionnaires, following the Declaration 

of Helsinki ethical protocols. The study started with a calibration 
procedure with the participant performing a T-pose. The calibration 
procedure resized the avatar dimension based on participants’ body 
height and arm length. A 5-minute warm-up session followed to get 
participants familiarized with VR and their virtual body [37]. They 
were asked to perform simple gestures such as practicing boxing 
and self-touch. 

The full trial always began with participants completing the ac-
tive interaction tasks, followed by the passive interaction tasks. The 
conditions were counterbalanced within each interaction type. In 
active interaction, participants walked through poles with/without 
physics correction. We counterbalanced the order of self-avatar 
conditions (active physics, active no physics) to avoid sequence and 
learning efects. In passive interaction, participants frst familiarized 
with how to control the virtual slider to adjust the physics response 
of avatars. Then, in the preferred physics level selection task, we 
counterbalanced the slider starting endpoints (passive select #1, pas-
sive select #2). We also counterbalanced the order of embodiment 
rating for the two avatar response endpoints (passive no physics, 
passive physics fall). 

After each task (2 active and 4 passive), participants were asked 
to rate their embodiment level using the embodiment question-
naire [64]. At the end of each interaction type (i.e., active, passive), 
we conducted a short interview to understand the participants’ 
general experience. 

3.3  Apparatus  
Figure 5 (a) shows the setup of our study. Participants wore an 
Oculus Quest 2 headset, which tracks their head and hands positions. 
The baseline of self-avatar control was achieved by the state-of-the-
art Inverse Kinematics (IK) from partial body tracking rather than 
full-body motion capture. For our IK baseline, we chose Unity’s 
RootMotion Final IK [4], following prior work [6, 7, 63]. The physics 
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response of self-avatar was achieved by a state-of-the-art active 
ragdoll physics controller: Unity’s RootMotion PuppetMaster [5]. 
Note that while the physics stimuli contacting the upper body might 
infuence the self-avatar’s head location, we did not shift the user’s 
point of view to avoid motion sickness. 

The avatars used in the study were selected from Microsoft’s 
Rocketbox avatar library [34], as shown in Figure 5 (b) and (c). 
We assigned the avatar to each participant based on their self-
identifed gender, following prior work [79]. While we did not 
personalize the avatar appearance for each participants, past works 
showed that embodiment could be elicited with avatars of diferent 
appearances [60, 95]. In Section 5.4, we further discuss the decision 
of avatar customization in this study. 

Figure  5:  Setup  of  our  user  study.  (a)  A  participant  is  com-
pleting  a  study  task.  (b)  and  (c)  Avatars  used  in  our  study  for  
female  and  male  participants,  respectively.  

3.4  Participants  
To determine the sample size for our study, a priori power analysis 
was conducted using G*Power [23], based on embodiment rating 
data from pilot study (n = 8) on active interaction task (walking 
through poles when embodying a physics-aware and no-physics 
avatar correspondingly). The efect size in pilot study is 0.93, which 
considered to be large using Cohen’s [18] criteria. With a signif-
icance criterion of � = 0.05 and power = 0.95, we found that the 
minimum total sample size needed for Wilcoxon signed-rank test 
with two tails is 18. 

We recruited 21 participants (10 self-identifed females, 11 self-
identifed males) between the ages of 18 to 65 years old (M = 23.3, 
SD = 4.9). The level of experience in VR and gaming difered widely 
across participants, from frst-time users to VR experts. The study 
took approximately 45 minutes and all participants were compen-
sated $20 for their time. One participant was excluded from the 
following analysis as they reported that they could not fnd any 
visual diference between physics and no-physics avatar conditions. 
Thus, the fnal sample size is 20 participants. 

3.5  Measures  
To understand the efects of physics-aware avatars on user expe-
riences, we used the embodiment questionnaire designed by Peck 
et al. [64], which includes 16 Likert scale questions under the sub-
scales of Appearance, Response, Ownership, and Multi-Sensory. 
Participants rated each statement on a scale of 1 to 7, with 1 being 
“never” and 7 being “always”. We adopted questionnaires as the 
main evaluation metric due to its versatility and ease to use [35]. 
It did not put burden on the participants to wear extra hardware 
devices for physiometric sensing. Past works also have showed 
that subjective measures embodiment levels collected by question-
naires are correlated with objective measures, such as electroen-
cephalogram [36, 62]. Therefore, the adoption of a comprehensive 
embodiment questionnaire is our frst step to uncover the impact 
of physics-aware avatar on embodiment. 

To compute the fnal embodiment ratings, we frst calculated 4 
sub-scale scores by averaging questions within each sub-category 
(appearance, response, multi-sensory, ownership). Then, we av-
eraged the sub-scale scores for the fnal rating. The computation 
followed the instructions provided by Peck et al. [64]. 

Embodiment is closely tied to many other factors, such as pres-
ence [61], perception [8, 30] and ultimately behavior [29]. Therefore, 
it can be a useful metric that also help discuss physics correction’s 
impact on other critical aspects of the VR experience. 

4 RESULTS 
Figures 6, 7, and 8 depict the main results of our study. We found 
that physics-aware self-avatar improved the sense of embodiment 
in active interaction (Figure 6), confrming H1. In passive inter-
action tasks, all participants chose physics-aware self-avatar over 
no-physics one, confrming H2, and physics correction was also 
shown to improve the level of embodiment (Figure 8). Moreover, 
we uncovered the range of physics correction participants found as 
most embodied in our passive interaction task, which is 32.2 to 35.5 
centimeters from their physical body positions (Figure 7), whereas 
the use of strong physics correction undermined and ended up 
disembodying participants, confrming H3. 

4.1  Active  Interaction  
H1 (embodiment) We analyzed our data using a two-sided Wilcoxon 
signed-rank test and found a signifcant diference between physics-
aware and no-physics self-avatar on overall embodiment rating in 
the active condition (p = 0.017). The results showed that physics-
aware self-avatar (M = 4.1, SD = 1.2) improved sense of embodiment 
in active interaction compared to non-physics self-avatar (M = 3.5, 
SD = 1.3), which confrms H1. 

Looking into the sub-scales of the embodiment ratings, we also 
performed a two-sided Wilcoxon signed-rank test. We found sig-
nifcant diferences on appearance (p = 0.02), response (p = 0.009) 
and multi-sensory (p = 0.006) scales between physics-aware and 
no-physics self-avatar. It showed that participants felt a stronger 
attachment to the external appearance of the virtual body when 
embodying a physics-aware self-avatar (M = 4.2, SD = 1.3) than a 
non-physics self-avatar (M = 3.5, SD = 1.3). Moreover, participants 
developed a stronger response to external stimuli when embodying 
a physics-aware self-avatar (M = 3.7, SD = 1.4) than no-physics 
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Figure  6:  Embodiment  in  active  interaction  for  physics  and  no  physics  conditions.  (a)  overall  ratings,  (b)  embodiment  sub-
measures.  

self-avatar (M = 2.9, SD = 1.6). Physics-aware self-avatar (M = 4.4, 
SD = 1.3) were also found to increase multi-sensory experience 
than no-physics self-avatar (M = 3.6, SD = 1.5). No signifcant dif-
ference (p = 0.3) was found between physics-aware (M = 4.1, SD = 
1.2) and no-physics (M = 3.8, SD = 1.1) self-avatar in the ownership 
sub-measure. 

4.2  Passive  Interaction  
H2 (preference). In passive interaction tasks, participants were 
asked to select with a slider of possible self-avatar motions: from 
no visible movement (passive no physics) up to the avatar falling 
down as a result of the hit (passive physics fall). Participants had to 
fnd the point on the slider where they felt most embodied. Using 
this type of test, we can detect the sensitivity of users as well as 
better understand the thresholds of perception. 

All participants chose self-avatars that developed some physics 
motions. In other words, none of the 20 participants chose no-
physics self-avatar as most embodied in either of the selection trials. 
This confrms our H2, where participants preferred physics-aware 
self-avatar over no-physics one in passive interaction. Figure 7 
plots the distribution of selected physics correction in our passive 
interaction tasks. We omitted data from one participant (P19) whose 
selection of preferred physics correction is regarded as an outlier 
(above two standard deviations from overall distribution). The ofset 
between physics self-avatar response and user input was calculated 
with the formula introduced in Section 3.1. 

For the task to maximize embodiment, participants’ chosen 
physics correction was 35.5 cm (SD = 10.0 cm) in passive select 
#1 (selecting started from the self-avatar completely falls when hit) 
and 32.2 cm (SD = 10.0 cm) when in passive select #2 (selecting 
started from no physics at all). No signifcant diference was found 
between the two selection trials. The diference between the se-
lected average values was barely perceptible by participants and 
indicated sensitivity. On average, participants spent 95 seconds 
making one selection, indicating that they have a clear preference 
and found the task easy to complete (after initial familiarization 
with the slider operation and its corresponding avatar response). 

H3 (embodiment). Figure 8 showed the result of embodiment 
rating in passive interaction tasks. We frst performed a Friedman 
test and found a signifcant diference (p < 0.05) among the four 

Figure  7:  Preferred  physics  correction  selected  in  passive  
tasks  using  the  slider.  (a)  Distribution  of  selections  with  an  
outlier  excluded.  (b)  and  (c)  Visualization  of  average  preferred  
physics  behavior  that  participants  selected  from  the  two  ends.  
(d)  Visualization  of  diference  between  the  two  preferred  
physics  corrections.  

tasks in overall embodiment score (passive no physics, passive select 
#1, passive select #2, passive fall down). Thus, pair-wise Wilcoxon 
rank sum tests with Bonferroni correction were conducted. 

Specifcally, we found a signifcant diferences between passive 
no physics and passive select #1 (p = 0.01), passive no physics and 
passive select #2 (p = 0.004). This indicates physics-aware self-avatar 
(passive select #1: M = 3.8, SD = 1.2; passive select #2: M = 3.9, SD 
= 1.2) improved the sense of embodiment in passive interaction 
compared to no physics (M = 3.3, SD = 1.1). 

Signifcant diferences were also found between passive no physics 
and passive physics fall (p = 0.003), passive select #1 and passive 
physics fall (p = 0.00001) and passive select #2 and passive physics 
fall (p = 0.00003). It indicates that too much physics correction (e.g., 
falling down when hit by a ball) would rather drop the embodiment 
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Figure  8:  Embodiment  in  passive  interaction  for  physics  and  no  physics  conditions.  (a)  overall  ratings,  (b)  embodiment  sub-
measures.  

level  (M  =  2.3,  SD  =  1.2)  than  improve  it.  This  confrms  our  H3,  
and  is  aligned  with  literature  on  body  semantic  violations  [62].  No  
signifcant  diference  was  found  between  the  two  selected  physics  
levels  regarding  embodiment  rating  (p  =  1).  

The  sub-measures  scores  were  analyzed  using  the  same  method  
as  the  overall  embodiment  score.  After  Friedman  tests,  signifcant  
diferences  were  found  in  all  four  sub-scales:  appearance  (p  <  0.05),  
response  (p  <  0.05),  multi-sensory  (p  <  0.05)  and  ownership  (p  <  
0.05).  Thus,  pair-wise  Wilcoxon  rank  sum  tests  with  Bonferroni  
correction  were  conducted.  Table  1  in  Appendix  shows  the  detailed  
result  of  the  pair-wise  test.  

In  summary,  all  sub-measures  except  for  ownership  followed  the  
trend  of  overall  embodiment  score.  The  physics-aware  self-avatar  
(passive  select  #1,  passive  select  #2)  was  found  to  increase  attachment  
to  the  external  appearance  of  the  virtual  body,  develop  a  stronger  
response  to  external  stimuli  and  improve  the  multi-sensory  ex-
perience  in  passive  interaction.  Same  as  in  active  interaction,  no  
signifcant  diferences  were  found  between  physics  and  no-physics-
self  avatar  in  the  ownership  sub-scale.  Over-correcting  the  physics  
response  (passive  physics  fall),  on  the  other  end,  drastically  de-
creased  all  four  sub-scales,  compared  to  the  other  three  conditions.  
We  consider  the  lack  of  diference  in  body  ownership  score  as  an  
indication  of  the  good  control  that  participants  felt,  even  if  their  
virtual  bodies  did  not  physically  react  as  they  would  have  expected.  

4.3  Qualitative  Feedback  
Sense of presence. When controlling a no-physics self-avatar, 
most  participants  reported  feeling  less  sense  of  presence  and  less  
engaged  when  they  interacted  with  objects  in  the  virtual  environ-
ment  in  active  interaction.  For  example,  P3  described  the  experience  
as:  “There  was  no  sense  of  me  actually  going  through  the  pillars  
because  the  virtual  body  didn’t  have  any  response  to  them.  It  didn’t  
move  at  all,  it  walked  like  nothing  was  there.”  Similarly,  P15  re-
ported  that:  “The  minute  I  noticed  my  body  wasn’t  responding  to  
the  pillar  in  the  way  my  real  body  wanted  to  (avoiding  the  pillar,  
leaning  to  the  side),  I  stopped  really  noticing  the  pole  was  there.”  
Such  experience  disassociated  some  participants  from  feeling  the  
VR  environment  as  real  or  feeling  connected  to  the  virtual  body.  
“It  doesn’t  make  me  feel  real  in  terms  of  physics.  The  environment  
felt  less  real  and  interacting  with  it  also  felt  less  real”,  said  P20.  P10  
added:  “The  second  round  [with  no  physics]  I  just  walked  through  
the  pillar...  I  knew  what  I  was  supposed  to  feel  (dodging  the  pillars),  

but  I  didn’t  feel  it.  So,  it’s  easier  to  disassociate  myself  [from  the  
virtual  body].”  

These  comments  all  point  back  to  the  idea  of  plausibility  [81].  
In  order  to  feel  presence  in  an  environment,  the  events  in  it  need  
to  be  responding  like  they  would  do  in  reality.  As  we  fnd  in  our  
experiment,  this  means  (1)  plausibility  needs  to  include  the  self-
avatar,  and  (2)  it  is  very  much  connected  to  the  physics  between  
the  environment  and  the  self-avatar.  

Similarly,  in  passive  interaction  (ball  hitting),  all  20  participants  
found  the  no-physics  self-avatar  to  be  less  ideal  with  regards  to  the  
embodiment  of  the  avatar,  as  well  as  the  plausibility  and  presence.  
P19  described  the  experience  as:  “...there  was  no  movement  [from  
my  body],  and  the  only  thing  that  moved  was  the  ball.  Physics  
didn’t  make  sense.”  Similarly,  P7  reacted  with  less  sensitivity  to  its  
digital  surrounding:“  When  [my  body  was]  not  moving  at  all,  not  
sure  what  the  ball  behavior  was.  Not  sure  if  it’s  hitting  me.”  P13  
added  that  “when  the  body  didn’t  move  at  all,  it’s  unrealistic.”  P11  
described:“If  I  am  gonna  be  hit  by  a  big  ball,  at  least  I  am  gonna  
move.  If  the  avatar  didn’t  move,  [it]  seems  the  ball  was  not  afecting  
avatar  at  all.”  

Sense  of  embodiment.  When  walking  through  poles,  the  physics-
aware  self-avatar  developed  avoiding  behavior.  This  behavior  matched
many  participants’  expectations,  even  though  their  own  bodies  
didn’t  follow  that  motion.  Such  avatar  behavior  can  have  diferent  
efects  on  embodiment  and  how  participants  integrate  their  virtual  
body  as  their  own.  P15  for  instance,  said  that:“my  frst  instinct  was  
to  avoid  the  pillar  [myself],  and  my  virtual  body  was  also  doing  
so;  I  felt  more  so  that  my  virtual  body  is  an  actual  manifestation  
of  myself.”  The  way  self-avatar  interacted  with  the  obstacles  not  
only  impacted  on  the  perceived  embodiment  level  of  some  partic-
ipants,  but  also  created  visual-driven  haptic  illusion:  “I  felt  more  
embodied  in  the  frst  trial  [with  physics]  where  I  dodged  the  pillar.  
Because  the  pillar  looks  metallic  and  heavy,  the  fact  that  I  have  to  
dodge  that,  it  enforces  the  illusion  of  touching  it  and  it’s  a  physical  
thing.”  said  P10.  When  comparing  with  the  no-physics  self-avatar,  
P1  said:“There  were  obstacles  and  my  body  should  avoid  them...  
Even  though  I  didn’t  do  the  avoidance,  it  felt  like  it’s  my  own  move-
ment.  The  frst  [no-physics]  one  is  closer  to  my  own  movement  
but  I  like  the  second  [physics]  one  more.”  3  out  of  20  participants  
(P1,  P14,  P16)  also  mentioned  that  the  behavior  of  the  self-avatar  
infuenced  their  own  movement.  “I  can  see  the  avatar  avoiding  the  
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pillar... I tried to align my body with the avatars to avoid the pillars”, 
said P14. 

While physics-responsive self-avatars develop more natural be-
havior, some participants pointed out the discrepancy between 
their input and self-avatar’s motion broke their experience. P17, 
for instance, said:“...the avatar was afected by the pillar, but my 
own body was not, so there was some disconnectivity there”. These 
discrepancies further lead to self-agency issues in the virtual body: 
“the avatar has its own autonomy and was avoiding the pillar, even 
when I was not doing that” said P16. P12 further added that: “When 
I bumped into the pole, the avatar was no longer in my control and 
it was in the program control. That’s not what I imagined I was 
moving. There was something else taking over me.” 

Nevertheless, no-physics self-avatar is not without benefts. Al-
most half of the participants (8 out of 20) reported that they felt 
more synchronization between their motion and self-avatar motion 
with no-physics self-avatar. P5 described it as “the virtual body 
moved exactly as real body moved” and P26 added that “I felt more 
of my body. The avatar was more aligned with my own body.” As 
upon the interaction with the pillars, P7 said: “I felt more control 
of the body. I could move whatever I want, but I couldn’t feel the 
pillar.” P11 further elaborated that: “[no physics] one was intuitively 
not physical because the virtual body can pass through obstacles. 
But from a user perspective, it felt more natural because there was 
no deviation between the virtual [movement] and physical input.” 

This shows a possible duality and trade-of in active interaction, 
where we need to include physics at some point to increase plau-
sibility and embodiment, but that could decrease the subjective 
control users might feel over the avatar. Maybe overtime, users will 
start to compensate this dissociation in the body by unconsciously 
activating a self-avatar follower efect [31]. However, we did not 
observe such activation in our current experiments. 

As for passive interactions, all participants chose self-avatar with 
certain physics corrections to be more embodied. When asked about 
their criteria for selecting the most embodied physics level, many 
participants made selections based on how they imagined them-
selves would react to the ball. P8 described it as: “unconsciously 
thinking how I will react to it.” P13 added: “I envision myself that 
when I get hit, I would move a little bit but not too much”. Sim-
ilarly, P6 focused on “how in sync my body is compared to the 
avatar movement”. “I tried to move intentionally to see how much 
movement I would make and then select the closest one to my 
movement”, said P6. How realistic the reaction is also an important 
factor. “It needs to move but not too much”, said P20. 

Experiencing over-corrected self-avatar motions. While 
physics-aware self-avatar improves embodiment, over-correcting 
the physics behavior could backfre. When participants experienced 
self-avatars that completely fell down after a hit, participants ex-
pressed that the movement was “too exaggerated” (P6, P10) and 
even “ridiculous” (P19, P20). “I don’t expect my body to fall just 
with a ball”, said P13. P2 added:“it feels like my virtual body deviates 
from my physical body because it fell on the foor and I was still 
standing.” 13 out of 20 participants expressed that they would even 
favor no-physics self-avatar to the one that over-corrects. “I didn’t 
feel the presence of the ball [with no-physics self-avatar], but at 
least I felt that I was in the game”, explained by P4. For participants 
that favored the fall-down behavior over no-physics (P1, P8), P1 
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elaborated that:“Because it at least gave me something. There was 
a ball, I should at least do something.” P8 added: “I might fall like 
this with this size of the ball.” The remaining 5 participants didn’t 
hold a strong preference between the two as they regarded both as 
sub-optimal. 

These comments are in agreement with research reproducing 
anarchic hand illusions inside VR, where people lose control of 
their hand while performing a rapid decision motor task [62]. In 
these experiments, researchers found that the embodiment illusion 
breaks after body semantic violations. 

5  DISCUSSION  
In this section, we frst discuss the insights derived from our experi-
ment results. Then, we uncover applications that could be benefted 
from our fndings and how our results translate to applications 
where users might not pay full attention to virtual body. Lastly, we 
discuss limitations of this paper and directions for future work. 

5.1  Embodiment,  Presence  and  Environment  
Awareness  

Embodiment in virtual reality is an illusory body ownership to-
ward an avatar. Past research uncovered multiple factors that drive 
embodiment illusion, such as visual perspective, sensorimotor con-
tingency, and external appearance [25, 57, 84]. In this work, we 
extend beyond considering the virtual body as a singular entity 
isolated from its environment, and introduce physics-driven body 
reactions to self-avatar. The VR environment is often the key to 
presence, which is a combination of place illusion (i.e., feeling being 
there) and plausibility illusion (i.e., the events happening are real). 

The joint aspects of embodiment and presence create an intrinsic 
need to balance the bodily and the environmental factors. On one 
hand, we need to preserve the agency of our actions and intentions 
in VR (sensorimotor contingency and motor control loops [26]), 
and on the other hand, we need to have a sense of "being there", 
and believing events happening are real (i.e., physics motion that 
react to the environment stimuli). 

Our results showed that adding physics correction to self-avatar 
motion generally improves embodiment in upper body tasks. We 
observed improvement in all sub-scales of embodiment except for 
the ownership measures in both active and passive interactions. 
The ownership sub-measure is tightly related to the control, loca-
tion, and visual features of the virtual body. We regard the lack 
of diference in ownership sub-scale as an indication of a good 
control that participants felt when embodying both physics-aware 
and no-physics avatars. While physics-aware avatars introduce a 
visual-proprioceptive mismatch, decreasing the control of partici-
pants on virtual body movement, the ownership sub-scale results 
showed that physics correction does not compromise virtual body 
ownership. Rather, participants were able to accept a certain level of 
visual-proprioceptive mismatch in trade with behavioral realism of 
their virtual body when encountering physical impacts. Our results 
also showed that over-correction in physics would backfre and 
decrease overall embodiment level. 

Although we did not have a direct metric for presence, we found 
a clear preference for the realism introduced by the physics in 
the passive interactions. Additionally, we see reports of stronger 
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presence feelings when embodying physics-aware self-avatars in 
the qualitative interview. The increase in presence could be due to 
the increased embodiment, as it is known to be positively correlated 
with presence; but it could also be directly associated with the 
increased plausibility of the interaction with environment stimuli. 

In summary, our work shows the importance of preserving en-
vironment awareness when embodying a virtual avatar in VR in 
order to maintain the plausibility of the experience, and ultimately 
improve user’s embodiment and presence. It is another step to push 
toward the reality-based interaction paradigm proposed by Jacob 
et.al. [39]. Beyond focusing on factors determining “body aware-
ness” (awareness of own physical body and skills for controlling 
bodies), physics correction introduces “environment awareness” 
(sense of the surroundings and skills for manipulating within the 
environment). Our fnding showed that preserving environment 
awareness through physics-responsive self-avatar does not com-
promise body awareness but rather improves embodiment. 

5.2  Applying  Physics  Correction  to  Modify  
One-to-one  Mapping  

Our interaction with the VR world heavily relies on sensorimotor 
loops, in which the sensory aferent feedback, mainly in the form 
of visual and audio information from the headset, needs to align 
with the user’s motor actions. When adding physics correction to 
the motion of self-avatars, it could lead to a visual-proprioceptive 
mismatch, by which one-to-one mapping of motion is disrupted, 
and the avatar does not completely match with the real body (shown 
in Figure 9). 

This is an increasingly relevant issue in VR as the interaction 
techniques become more advanced, such as when introducing AI-
driven motions to improve the performance of users [7], or when 
reducing tracking power and relying on inverse kinematics [19]. 
However, not all the subproducts of modifying one-to-one mapping 
are negative. In fact, these types of dissociation have been exploited 
to drive haptic re-targeting techniques and even can generate self-
avatar follower efects. 

Figure  9:  Visual-proprioceptive  mismatch  created  by  adding  
physics  correction  to  avatar  motion.  Using  hands  as  an  ex-
ample,  when  a  user  is  grabbing  an  object,  the  physics  hand  
leaves  on  the  surface  of  the  object  while  the  actual  hand  
might  already  penetrate.  

Tao, et al. 

As the frst step to investigate how physics-aware avatars impact 
on embodiment, we focused on upper body tasks (i.e., physical im-
pacts happening on the shoulder) in our current study. This decision 
allows us to study with mainstream consumer-level VR headsets, 
which only tracks head and palm orientation, as a baseline. More 
importantly, those upper body tasks lead virtual avatar to develop a 
wider range of ofsets from the actual user input, compared to tasks 
using hands alone. In our study, we also used a virtual mirror to 
have a constant and clear display of self-avatar’s upper body pose 
and amplify the user’s bodily awareness. We could see the use of a 
mirror as a proxy for applications that require high attention to the 
virtual upper body’s response in relation to the environment. We 
imagine our study results maybe be used to enhance upper body 
embodiment in applications where the user has a good view of their 
virtual upper body, such as physical training, rehabilitation, or see-
ing their body refection on a windshield. In those scenarios, users 
naturally focus on their upper bodies in relation to the stimuli from 
the environment. Future work is needed to explore generalization 
of the fndings to other body parts such as lower limbs. 

5.3  Awareness  of  Physics  Correction  
On some occasions, when the physics motion of the self-avatar 
are not perceived by the users, the gains on embodiment might be 
lost. On the other hand, we hypothesize that the negative efects 
of not providing correct physics would also not be visible when 
participants do not see their bodies. 

Beyond counting on full attention from the VR users, the physics 
impact on self-avatar body is also likely to be more noticeable 
when VR hardware advances in its feld of view (FOV). The head-
mounted display we used in our study is a popular commercial 
headset (Oculus Quest 2), which has a 104° horizontal FOV and 
98° vertical FOV [3]; this is far less than FOV of human eyes (210° 
horizontal and 150° vertical) [88]. The increase in FOV of head-
mounted displays would likely allow users to be more aware of 
the changes in their bodies after physical impact [59]. As HMDs 
achieve a larger vertical feld of view, we also believe that the issues 
of not having physics on avatars will become more prominent. 

Of course, there are always situations in which the users may ab-
sorb themselves into other tasks and not notice the physics impact 
on their virtual body even when it is visible [55]. We can envision 
several ways in these cases to extend the reach of physics reaction 
information to the users through multi-sensory channels and sen-
sory augmentation. (a) Directional audio can guide the attention 
of the users to the afected body part so that they are aware of the 
physical impact on the virtual body. (b) Directional visual efects, 
such as a glow, fying embers from the impact location, or visual-
ized wave, can also guide the user’s attention. (c) Augmenting hand 
or body motions. In general, the hands are the most visible parts 
of the avatar’s body, and the reaction to physical stimuli can be 
revealed in their movement to make it more visible. While there are 
many other ways we could possibly remap the virtual body physics 
reaction to enhance the noticeability, its impact on embodiment is 
subject to further investigation. 



             

            
            

          
  

           
          

           
          

           
           

          
          

         
            

           
           

          
         

           
         

          
            
           

          
     

           
          

     

        
            

          
         

           
         

        
 

         
          

          
       

          
         

         
        

         
         

   
           

          
           

          
         
            

         
          

           
     

        
         

        
         

          
       

       
         

        
   

         
         

          
        

          
         

            
         

         
         

        
       

       
           

           
        

 
           

          
          

          
              

  

 
    

 
      
      
      

 

Embodying Physics-Aware Avatars in Virtual Reality 

5.4  Limitations  and  Future  Work  
As we made the frst step to investigate the infuence of physics 
correction on embodying a virtual avatar, in this section, we lay out 
out some promising opportunities for future work to build upon 
our fndings. 

Impact on various body parts. In this study, we focused on 
investigating its impact on embodiment when the stimuli hit on 
the upper body. Although we conducted pilot studies on the lower 
body as well, we found the baseline embodiment was largely com-
promised by the limited tracking of the selected VR headset, which 
only provides head and palm orientation. The decision to focus on 
upper-body tasks allows us to study with mainstream VR headsets 
and state-of-the-art IK solver as a baseline. However, physics is 
an interaction between the full body and the environmental stim-
uli and can happen anywhere on the virtual body, as shown in 
Figure 10. Future work could look into the sensitivity of diferent 
body parts to physics correction and should frst guarantee a good 
tracking of that studied body parts. Moreover, in our experiments 
examining the efect of physics correction on embodiment, we 
provided a constant view of the avatar upper body. While some 
applications, such as training and rehabilitation, may enable such 
display, users in many other applications might only have a par-
tial view of their self-avatar (e.g. limbs only, or objects held by 
the hands). We wish to extend the experiments to diferent partial 
views of the self-avatar, and examine the possible generalization of CONCLUSION

Physics between our body and the surrounding environment is 
an essential part of our daily interactions. One-to-one mapping 
between user’s and self-avatar’s motion in VR, however, often leads 
to unnatural behavior without physical meaning. Adding physics 
correction, in turn, creates a discrepancy between the user and self-
avatar motion, whose synchrony is a determining factor for embodi-
ment in VR. In this work, we evaluated the impact of physics-aware 
self-avatar on the embodiment. We conducted a within-group study, 
where participants engaged in active and passive interaction tasks 
with and without physics correction on self-avatar’s motion. Our 
results showed that physics correction, while introducing a visual-
proprioceptive mismatch, improves embodiment level. The results 
highlighted the importance of preserving environment awareness 
while embodying a virtual body. Last but not least, we discussed 
how to translate our results to VR applications with and without 
full attention from users on their virtual bodies. 
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 no  physics  no  physics  no  physics  select  #1  select  #1  select  #2 
 vs  select  #1  vs  select  #2  vs  physics  fall  vs  select  #2  vs  physics  fall  vs  physics  fall 

 M  ±  SD  3.1  ±  1.1  3.1  ±  1.1  3.1  ±  1.1  3.7  ±  1.3  3.7  ±  1.3  3.8  ±  1.2 
 appearance  M  ±  SD 

 p-adj 
 3.7  ±  1.3 

 0.010 
 3.8  ±  1.2 

 0.002 
 2.25  ±  1.2 

 0.005 
 3.8 

 1 
 ±  1.2  2.25  ±  1.2 

 0.002 
 2.25  ±  1.2 

 0.0001 
 M  ±  SD  2.9  ±  1.4  2.9  ±  1.4  2.9  +  1.4  3.5  ±  1.5  3.5  +  1.5  3.5  ±  1.5 

 response  M  ±  SD 
 p-adj 

 3.5  ±  1.5 
 0.029 

 3.5  ±  1.5 
 0.034 

 2.1  +  1.2 
 0.007 

 3.5 
 1 

 ±  1.5  2.1  +  1.2 
 0.001 

 2.1  ±  1.2 
 0.001 

 M  ±  SD  3.4  ±  1.2  3.4  +  1.2  3.4  +  1.2  4.0  ±  1.3  4.0  +  1.3  4.1  ±  1.3 
 multi-sensory  M  ±  SD 

 p-adj 
 4.0  ± 

 0.103 
 1.3  4.1  ±  1.3 

 0.042 
 2.3  +  1.3 

 0.003 
 4.1 

 1 
 ±  1.3  2.3  +  1.3 

 0.00002 
 2.3  ±  1.3 

 0.001 
 M  ±  SD  3.7  ±  1.1  3.7  ±  1.1  3.7  ±  1.1  4.0  ±  1.1  4.0  ±  1.1  4.0  ±  1.1 

 ownership  M  ±  SD 
 p-adj 

 4.0  ± 
 0.168 

 1.1  4.0  ± 
 0.27 

 1.1  2.5  ±  1.3 
 0.008 

 4.0 
 1 

 ±  1.1  2.5  ±  1.3 
 0.0009 

 2.5  ±  1.3 
 0.002 
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Table  1:  Sub-measures  of  embodiment  rating  for  passive  interaction  
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