
CityLifeSim: A High-Fidelity Pedestrian and Vehicle
Simulation with Complex Behaviors

Cheng Yao Wang
Cornell University, USA

Oron Nir
Microsoft, Israel

Sai Vemprala, Ashish Kapoor
Microsoft, USA

Eyal Ofek, Daniel McDuff
Mar Gonzalez-Franco*
Microsoft Research, USA

Fig. 1: Screenshots of the simulation of pedestrians inside CityLifeSim: walking by a park, crossing a street, hailing a bus. A view of the depth, segmentation
and RGB maps as seen by a vehicle in the street. The weather parameters available.

Abstract—Simulations are a powerful tools particularly in the
case of safety critical scenarios. However, simulating complex
temporal events in multi-agent scenarios with vehicles and
pedestrians, such as those that exist in urban environments, is
challenging. We present CityLifeSim, a simulation for the research
community that focuses on rich pedestrian behavior, such as the
one that arises when different personalities, environmental events,
and group goals are simulated. In our simulations we can see cases
of people jay walking a red light, sitting on a bench, waiting for
the bus, or calling on the phone, but also more complex creation
and management of crowds that might even line up or just keep
moving while observing interpersonal distances. CityLifeSim is
configurable and can create unlimited scenarios with detailed
logging capabilities. As a demonstration we have run CityLifeSim
to create a demo dataset for training setups that includes 17
different cameras, views from a moving vehicle in the street
under different weather conditions (rain, snow, sun), and from a
drone with frontal and downward views. All content is released
with the corresponding original configuration files, ground truth
pedestrian segmentation, and RGB-D frames. We evaluate our
dataset on a pedestrian detection and identification task with state
of the art Multi-Object Tracker (MOT), showing the limitations
and opportunities for synthetic data in this use case.

Index Terms—pedestrian simulation, self-driving cars, causal
ML, dataset

I. INTRODUCTION

Simulations are a cornerstone of complex games and

environments, and they will have a central role also for

VR and AR setups. Furthermore, given the pivotal role

that data plays in machine learning systems, simulations

are also becoming a powerful part of the infrastructure for

training models. Computer vision systems have long used

*Corresponding author: margon@microsoft.com

Our simulation and dataset are available on - CityLifeSim.github.io

simulations for evaluation [1]–[6], as they provide a way for

systematically varying parameters and generating samples with

“perfect” labels. More recently, as simulations have improved

and data-hungry deep learning systems have become more

common, simulations have been used for creating training

data [7], [8]. Researchers have designed synthetic pipelines

to generate samples that help to address problems such as

a lack of representation [9] and bias [10]. Simulations have

also proven useful in more nascent domains, such as causal

and counterfactual reasoning, as the parameters of synthetic

environments can be used to create causal relationships between

elements and introduce confounders [11]–[13].

These have all surfaced as interesting spaces where simula-

tions are thriving and growing, but the area where simulations

are becoming essential is in safety-critical scenarios, where it

may not be ethical or realistic to witness or “cause” specific

sequences of events in the real world.

Autonomous systems that operate in environments with

humans require certain fundamental components that fall in

the realm of safety-critical applications. For example, any

autonomous vehicle that needs to perform pedestrian detection,

trajectory prediction, and is required to reason about their

actions has to be trained to deal with varied, and perhaps

rare, safety-critical scenarios related to pedestrians. However,

it may not be possible or ethical to cause real world unsafe

situations for experimentation and testing; hence simulations

such as the presented system are essential for designing such

machine learning systems. Unsurprisingly, synthetic data have

been employed heavily in autonomous driving scenarios, e.g.,

GTACrash [14], VIENA2 [15], CARLA [16], AirSim [17], and,

more recently, CausalCity [18].

Despite the existence of multiple datasets and simulations,

11

2022 IEEE 2nd International Conference on Intelligent Reality (ICIR)

978-1-6654-8755-9/22/$31.00 ©2022 IEEE
DOI 10.1109/ICIR55739.2022.00018

20
22

 IE
EE

 2
nd

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 In

te
lli

ge
nt

 R
ea

lit
y

(I
C

IR
) |

 9
78

-1
-6

65
4-

87
55

-9
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

IR
55

73
9.

20
22

.0
00

18

Authorized licensed use limited to: GOOGLE. Downloaded on April 07,2023 at 04:12:22 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: A city environment map showing locations of points of interest (POIs) and waypoints, used to create complex pedestrian and vehicle scenarios. Map’s
green regions highlight “low-risk walkable” areas for pedestrians. Pedestrians’ spawning positions and waypoints are shown the right image. Both waypoints
and POIs’ interactions are defined in the configuration file.

there are still some unresolved weaknesses or gaps in the

widely available tools. Firstly, public simulation environments

are often low-fidelity, both visually and in terms of behaviours

(e.g., CARNOVEL [19]). The second is the lack of configurable

control to create specific and complex sequences of events in-

volving multiple agents. In particular, the support for pedestrian

behaviors is often limited. GTACrash and VIENA2 [15] are

created on top of the videogame Grand Theft Auto V (GTA),

which provides high visual fidelity, but still not customizable

enough with only a static dataset and with limited access tothe

underlying simulation. CARLA, on the other hand, provides a

similar visual fidelity to AirSim, and also has pedestrians that

can navigate sidewalks, understand traffic lights and crossings

etc. But they lack further support for crowd intelligence,

personality of agents or otherwise more complex interactions

with the environment. Which in CityLifeSim we make available

through particular support for POIs, and individual agent

configurations, which ultimately allows simulating pedestrians

and vehicles with rich behavioral variety.

In the remainder of this paper we: 1) Present a novel,

state-of-the-art, highly configurable simulation, released as

an executable, 2) create a snapshot dataset and benchmark

performance for pedestrian detection and identification, 3)

define a set of tasks that demonstrate the potential of such a

simulation for safety-critical tasks.

II. SIMULATION

Our goal in creating CityLifeSim is to provide a city

simulation environment where vehicles and pedestrians have

realistic and complex interactions. This system can be used

both to create smarter agents in immersive environments, as

well as be used to train machine learning algorithms.

CityLifeSim is built on the Unreal Engine, which is also

the main engine behind the existing environment of the

AirSim [17] vehicle simulator, which can then be config-

ured externally. Unreal Engine has also been used in the

past for creating data employed for interrogating computer

vision systems [6]. AirSim, provides the backbone of our

Fig. 3: Pedestrian automaton uses multiple simulation layers that will affect
their paths, from the 3D model to the personality parameters in the configuration
file that will affect all decision making, to the low level collision avoidance.

simulation and already contains the capability to render cars

and drones that are controllable through a Python API. It

enables environment variations such as weather, time of the day,

and visibility parameters, to create complex, varied, and visual

datasets. AirSim also allows recording a range of modalities

(e.g. color, depth, segmentation maps) from multiple cameras

for logging/visualization.

We simulate more complex vehicle behavior on top by

leveraging the AI traffic modules from [18]. By changing

the simulated pedestrian’s and driver’s objectives (targets) and

preferences (such as detour susceptibility), we can obtain high-

fidelity pedestrian and vehicle simulations that can be paired

and scripted at a high-level using CSV or JSON configuration

files.

At run-time, a pedestrian, defined through a configuration

file, starts walking from its spawn point through zero or more

waypoints toward its final goal position. The spawn or goal

points are selected from a list of such feasible points in the

environment (Figure 2). The spawn time is spread along the

simulation time.

On top of the pre-configured pedestrian course, a built-in

12

Authorized licensed use limited to: GOOGLE. Downloaded on April 07,2023 at 04:12:22 UTC from IEEE Xplore. Restrictions apply.

function enables reactive obstacle avoidance behavior, and an

additional dynamic layer that will make the pedestrian react

in different ways to POIs in the environment, after pedestrians

execute an update on their task they return to their original

target.

A. Pedestrian Modeling

In CityLifeSim the pedestrian simulation is a complex multi-

layer process (Figure 3). The final trajectory executed by a

pedestrian takes several aspects into account: such as the 3D

model, existing environment, and the pre-configured route, all

the way to local avoidance, and finally the interactions with

events it might decide to spend time on during the simulation.

CityLifeSim also enables the pedestrians to stray off the path

to approach/respond to points of interest (POI). For example,

POIs allow pedestrians to join a friend in the street, sit on a

bench, stop at a traffic light, stop to watch a street event, or

form a line to catch the bus. Pedestrians that engage with the

environment will do so for a limited time and then return to their

original path. Such behavior is governed by a pre-configured

probability that controls how likely a pedestrian will be affected

by particular POIs. Thus creating varied behaviors for different

pedestrians that are important in particular for simulating rich

street environment with unique situations.

Characters and Animations. Into the city environment we

integrate the graphics and animation assets from the Microsoft

Rocketbox [20] library of avatars that consists of 115 characters

and avatars fully rigged for animations and with high definition.

These avatars have been widely used for Virtual Reality and

other libraries to animate them have been also released. The

library also contains over 1000 animations that can be combined

and used among the avatars. A column in the configuration

file indicates which identity will be used for which person.

B. Points of Interests - POIs

As a pedestrian walks along its planned path, different

resources or events in the environment that may lure them

to modify their path, getting closer or further away from these

points (Figure 4). In CityLifeSim we model such events using

Points-of-interests (POIs) of three types: Attractors that lure

pedestrians (Figure 5), Repellers which drive pedestrians away,

and Blockers that represent impassable areas. Once a pedestrian

steps into a POI, there is a possibility she will change her path,

and behaviour depending on their pre-configured personality

and the state of the POI.

All POIs follow a similar structure, they have an impact area
around them, a capacity defining the number of concurrent

served pedestrians, and the service-time that each person stays

at the POI. Pedestrians follow the pre-configured probabilities

together with rules such as proximity [21] to define if they

are going to be affected by the POI. After a pedestrian has

completed the interaction with the POI they will return to their

path, leaving a vacancy for the next person.

a) Attractors.: Are defined with an area of attraction

around them and a smaller area of interaction inside them.

Pedestrians that enter the area of attraction will be directed to

Fig. 4: a). Attractors (green) draw people toward them, Repellers (red)
represent points that people avoid, and Blockers (gray) represent non-traversal
areas. POIs might also have influence only in some pedestrians, or in certain
times. As such blockers can also be used to halt pedestrians at traffic lights.

the interaction space, that might take more or less time. This

might generate cues or crowds, depending on how the attractor

is defined and how many people it can serve. In our system

we have three examples of attractors as seen in Figure 5.

Fig. 5: Attractor examples with associated times and animations. The orange
box is the attraction area, the cylinder indicates the direction and the dots
highlight where a queue will form. Left: Street dancing gathering. Center: A
bench, can serve only one person. Right: A bus stop with waiting pedestrians
that form a line while the first pedestrian hails for the bus. Bottom: Attractors
at run-time in the simulation.

b) Repellers.: The repel area is defined with a grid of

points affected by the repeller. Each value has a probability of

a pedestrian repelling from their path. A local path planning

phase is used to generate a path that will minimize stray from

the path, yet keep the pedestrian at a distance from the repeller

(a function of the pedestrian susceptibility to influence. In

CityLifeSim we implemented an example repellent: a loud

angry person on the street. (Figure 6).

Fig. 6: A repeller example. Top) A loud person on the phone repels pedestrians
from her near vicinity (POIRepeller1). The repel probability values are defined
in a grid around the repeller. Bottom) At runtime, a local path finding is
calculated in the repulsion area.

13

Authorized licensed use limited to: GOOGLE. Downloaded on April 07,2023 at 04:12:22 UTC from IEEE Xplore. Restrictions apply.

c) Blockers.: These are used to represent an impassable

obstacle. A pedestrian whose path goes through a blocker will

be stopped. Blockers are used to guide and protect pedestrians,

a blocker in front of a car prevents pedestrians to step in front

of the car, or to temporarily stop pedestrians when the crossing

traffic signal turns red (POIBlocker1). We use only moving or

temporary blockers, permanent blockers can be implemented

in the geometry as normal obstacles.

C. Pedestrian configuration file

The whole Pedestrian simulation can be configured externally

using a CSV configuration file as shown in Figure 7.

Most importantly a pedestrian’s susceptibility to influences
parameter (POIProbs), represented by a score between 0 and 1,

is the probability the pedestrian may choose to stray from its

main goal to interact with different POIs. These probabilities

are the root of each pedestrian’s behavior.

Fig. 7: An example configuration file, defining 3 pedestrians. Each pedestrian
has a unique ID, task (spawn position and target waypoints), walking speed,
probability of interaction with different POI, and rendering parameters (model,
animations).

D. Path Finding

Path finding is the process of defining the valid, high level

path executed by each pedestrian. It is executed first when a

pedestrian receives their task of walking from a start position

to the next way point, and again at each way point toward the

next one. The path may also be executed locally, to adapt the

pedestrian path accordingly once a decision is made to take a

detour from the planned path toward an attractor or away from

a repeller. The pathfinding procedure in CityLifeSim uses the

‘Recast and Detour’ algorithm to find the shortest collision-free

path from the current pedestrian position to the next waypoint.

Recast and Detour is available as a native Unreal Engine feature

- it first calculates the NavMesh which merges all known objects

in the environment to one unified mesh (see the Blue mesh in

Fig. 8 b and d). Upon this mesh, an A* algorithm [22] is then

used to find a feasible path for each pedestrian as required.

Fig. 8: Left). Part of the urban environment model. Middle). Navmesh
generates a unified mesh that incorporate all obstacles. Right). A* is used to
generate a path (light blue lines) that pedestrians then follow.

a) Collision avoidance.: CityLifeSim deals with moving

obstacles, not included in the NavMesh, using the Reciprocal

Velocity Obstacles (RVO) system inside the Unreal Engine. It

looks at the moving agents in the vicinity of the pedestrian,

assuming temporally constant velocity, and temporarily changes

the pedestrian velocity, then tries to return to the original

planned path (again, using collision avoidance if needed).
b) POI interactions: When a pedestrian enters the influ-

ence zone of a POI, it may modify its path, creating a new path

towards or away from the POI. Once the pedestrian finishes

its interaction, CityLifeSim recalculates the A* path to the

original waypoint destination.

E. Vehicles
The backbone of our vehicle simulation is based on AirSim

[17]. Additional vehicles are driven via an AI traffic module.1

This module handles low-level navigation and the vehicles

traverse the scene along predefined splines. In the configuration

file of the vehicles, each vehicle is given a spawn point and

a list of actions to execute. Actions are slightly different

from the notion of pedestrians’ waypoints but the rules are

similar. Merging actions happen along lane splines and turning

actions happen at intersections. More details about the vehicle

control simulator can be found in CausalCity [18]. Vehicles

in CityLifeSim have an invisible collider in the front so that

the cars will stop if an obstacle such as a pedestrian enters

that space, until the object is gone. This cone area is also used

to stop the car when it detects red light ahead. This behavior

has exceptions, as it only makes the risk of collisions lower,

similar to the real-world, if a car is driving fast towards an

intersection and brakes late, it can still pass the light and risks

colliding with objects or pedestrians.

F. Traffic Signals
Our simulated environment contains traffic lights, and both

vehicles and pedestrians respond to them. To do so, we use POI

blockers that are coordinated with the light signals. Besides

keeping the traffic flowing in a realistic manner, traffic signals,

also introduce causal connections at the intersections. The

sequence and timing of these lights can be controlled during

the scenario run-time. Both pedestrians and vehicles can be

“forced” to continue progress during red light, to simulate

dangerous events. To do so, the blocker’s probability can be

reduced in the configuration file.

G. Logging
CityLifeSim provides rich logging capabilities, ranging

from recording visual modalities such as color, depth and

segmentation frames, to logs of pedestrians and vehicles

locations and velocities, their visibility in all sensors, traffic

lights state, weather conditions and more. Besides logging,

CityLifeSim also enables queries at run-time on the state of

different objects and agents on the scene that are visible through

an API built on top of Airsim. We provide examples of logging

on our project page and in our snapshot dataset.

1https://www.unrealengine.com/marketplace/en-US/product/arch-vis-ai-
traffic-system

14

Authorized licensed use limited to: GOOGLE. Downloaded on April 07,2023 at 04:12:22 UTC from IEEE Xplore. Restrictions apply.

III. SNAPSHOT DATASET

To further facilitate the tasks of those who want to use

this tool for machine learning applications, we created, using

CityLifeSim, a snapshot dataset, containing videos, depth

images and segmentation maps. The pedestrian IDs are indexed

consistently over time and between cameras. There a total of

128 pedestrians in each video and we provide the bounding

box ground truth with individual IDs for each pedestrian.

The color depth and segmentation videos include: 17

simulated cameras covering different waypoints and POIs from

Figure 2, each camera runs for about 13 seconds. 3 videos of a

car driving view, under different weather conditions: sunny (137

seconds), raining (141 seconds) and snowing (134 seconds).

2 videos of drone views, with a drone looking up front (94

seconds) and a drone looking down (94 seconds) from a zenithal

perspective. The simulations can be re-run by replaying the

same configuration files that are provided with the dataset.

These videos have a sampling rate of 10 frames/second, and a

resolution of 1024 x 640 pixels. For examples of the videos

see our project page.

Example Pedestrian Detection Task. We use the task of

pedestrian detection to exemplify what the simulation might be

used for. Pedestrian detection is also the backbone for many

other tasks, such as trajectory calculations or causal reasoning

or Representation Learning [23]. Which might also enable many

other tasks on the dataset. The Multi-object Tracking (MOT)

task for pedestrian detection is tested using the state-of-the-art

tracker - ByteTrack [24] and evaluated with standard metrics

according to MOTChallenge [25], namely MOTA, MOTP, and

IDF1. As opposed to real-life footage, ground-truth labels are

derived from segmentation maps instead of manual annotations.

The use of segmentation maps can help improve ML models, as

they can get pixel-accurate ground truth and outperform models

trained with human annotators, who would not recognize small

segments as pedestrians. In fact in our own dataset, we saw a

significant drop on performance if we accounted for bounding

boxes smaller than 10x10 pixels using a priory human labeled

dataset (t(16)=2.11, p<0.001, from 19±2% to 36±4% MOTA).

Our results with the filtered bounding boxes are shown in

Table I.

Fig. 9: Pedestrian detection performance. The colored boxes reflect the
bounding boxes of the tracker, the green segmentation map is the ground truth.
Examples of high and low accuracy detection. [24].

Factors like camera position and the pedestrian size dis-

tributions may yield either poor tracking results or state-of-

the-art performance. While cameras like “Cam 11” had high

accuracy, mostly missing pedestrians only as they were hidden

behind some obstacle (Figure 9); results on videos from the

drone top view were significantly worse than those from street

Scenario Conditions FN[%] FP[%] IDSW[%] MOTA[%] MOTP[%] IDF1[%]

Cam 0 Sunny 17.0 7.9 0.0 75.1 26.0 87.0

Cam 1 Sunny 87.9 6.8 0.0 5.3 27.2 20.3

Cam 2 Sunny 32.3 41.3 1.4 25.1 31.6 58.4

Cam 3 Sunny 44.9 37.2 0.7 17.1 29.4 47.5

Cam 4 Sunny 25.7 58.0 1.3 15.0 32.7 54.1

Cam 5 Sunny 43.2 29.0 0.8 27.0 33.6 50.6

Cam 6 Sunny 20.9 15.4 0.1 63.5 34.5 76.6

Cam 7 Sunny 24.5 44.3 0.7 30.5 32.8 61.3

Cam 8 Sunny 30.4 31.2 0.1 38.3 33.9 68.0

Cam 9 Sunny 29.9 26.2 0.4 43.5 30.5 68.9

Cam 10 Sunny 39.9 17.4 0.8 41.9 32.2 62.8

Cam 11 Sunny 22.5 9.8 0.8 66.8 28.6 69.3

Cam 12 Sunny 56.2 19.3 0.8 23.7 31.7 39.9

Cam 13 Sunny 63.6 15.8 0.6 20.1 31.6 45.7

Cam 14 Sunny 48.2 22.4 0.5 28.9 38.7 57.2

Cam 15 Sunny 22.5 12.3 1.6 63.6 30.5 65.3

Cam 16 Sunny 55.5 12.3 0.7 31.5 27.8 52.1

Car Sunny 35.5 10.1 2.1 52.3 27.2 17.6

Car Rainy 42.0 7.9 1.9 48.2 26.6 19.1

Car Snowy 46.8 10.5 1.9 40.8 26.6 17.5

Drone Top view 99.2 0.7 0.0 0.1 40.6 1.5

Drone Frontal 87.4 38.8 0.1 26.2 38.0 16.5

TABLE I: MOT evaluation of CityLifeSim dataset. Statistics:

False Negative detection rate (FN), False Positive detection

rate (FP), Identification swaps (IDSW), standard MOT metrics

[25] MOT Accuracy (MOTA), MOT Precision (MOTP), and

track identification preservation F1 score (IDF1).

level cameras, due to the fact that the detection model was

not optimized for zenithal views of pedestrians. Pedestrians

very far from the camera were too tiny to be detected. Other

cameras like “Cam 1” had very few pedestrians and when

they entered the frame, they were half cropped. Particular

illumination conditions as well as weather conditions also

dropped the accuracy, making it worse for snow conditions. It

should be noted that the frame rate of our videos was one third

(10Hz) of that used in the MOT20 challenge (30Hz), some

performance reduction is expected to be due to this too.

IV. DISCUSSION, LIMITATIONS AND BROADER IMPACT

During the creation and testing of CityLifeSim and our

Dataset, we have identified some key contributions that make

our work of particular relevance, but also some limitations.

First, CityLifeSim enables the generation of data that can

be hard to obtain in other ways, either because it happens very

rarely or because it creates safety concerns. With our level of

configuration we can create such data much faster. The level

of control provided and the rich behaviors that it generates are

also well beyond other simulation tools available. This makes

the system interesting for the creation of synthetic data that can

later be use to train new models. Data that relies on manual

annotation is limited to human perception, thus ground truth

is only as good as the human. Whereas using a simulation we

can achieve perfect pixel level labels for each object category

regardless of the size, without introducing errors due to human

judgement in the labeling process. This can help in interrogating

current ML tools, and pushing performance beyond manual

tagging. And while this is true for all simulations, again,

the realism of the behaviours we are able to produce can

15

Authorized licensed use limited to: GOOGLE. Downloaded on April 07,2023 at 04:12:22 UTC from IEEE Xplore. Restrictions apply.

have significant impact on this area. Our benchmark task on

our dataset shows some practical example of how the use of

simulated ground truth data might affect existing models.

Third, CityLifeSim also allows us to generate observations

of events from any view point (e.g., cameras), times of day,

weather conditions, etc. This means we can create datasets with

systematic variations in parameters and specific distributions

and then observe the effects of changing the parameters on

model performance. This, combined with the rich behaviors

that can be created, opens the door to a complete new set of

tasks such as causal discovery of relationships between agents.

Additionally the real-time nature of the simulation also makes

it a good candidate to be used in VR setups that require crowds

or multiple agents.

Of course, there are also limitations to our work. Any

simulation is only an approximation to the real-world. While

CityLifeSim has a considerable amount of functionality and

flexibility we do not argue that it creates perfectly realistic

behaviors or that the visual appearance of the scenes is

equivalent to a camera. Furthermore, it is a limited context

simulation, reflecting a relatively small geographic region

modeled on a city block. The environment, vehicles, and

pedestrians have limited diversity. As such, it is designed for

experimentation and exploration of machine learning techniques

and not for training autonomous systems that will be deployed

in the real-world. Nevertheless, it is still a capable tool and

we hope the research community will benefit from it.

And despite, we show the performance of a benchmark

pedestrian detection task on our dataset, it is also relevant

to note that this simulation would not be suitable without

further validation and research for tasks including: person/face

recognition, emotion or affect detection, identifying suspicious

behaviors.

V. CONCLUSION

We present CityLifeSim, a high-fidelity city simulation with

vehicles and pedestrians that allow for complex behaviors

and high-level scenario definitions. This simulation brings

together a large library of avatars and animations, a rich

simulation environment with comprehensive configuration and

logging capabilities, and the notion of agency that means that

vehicles and pedestrians can detect and avoid each other without

requiring very low-level control from the user.

REFERENCES

[1] Robert M Haralick. Performance characterization in computer vision. In
BMVC92, pages 1–8. Springer, 1992.

[2] VSR Veeravasarapu, Rudra Narayan Hota, Constantin Rothkopf, and
Ramesh Visvanathan. Model validation for vision systems via graphics
simulation. arXiv preprint arXiv:1512.01401, 2015.

[3] VSR Veeravasarapu, Rudra Narayan Hota, Constantin Rothkopf, and
Ramesh Visvanathan. Simulations for validation of vision systems. arXiv
preprint arXiv:1512.01030, 2015.

[4] VSR Veeravasarapu, Constantin Rothkopf, and Visvanathan Ramesh.
Model-driven simulations for deep convolutional neural networks. arXiv
preprint arXiv:1605.09582, 2016.

[5] David Vazquez, Antonio M Lopez, Javier Marin, Daniel Ponsa, and
David Geronimo. Virtual and real world adaptation for pedestrian
detection. IEEE transactions on pattern analysis and machine intelligence,
36(4):797–809, 2013.

[6] Weichao Qiu and Alan Yuille. Unrealcv: Connecting computer vision
to unreal engine. In European Conference on Computer Vision, pages
909–916. Springer, 2016.

[7] Erroll Wood, Tadas Baltrušaitis, Charlie Hewitt, Sebastian Dziadzio,
Thomas J Cashman, and Jamie Shotton. Fake it till you make it: Face
analysis in the wild using synthetic data alone. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 3681–
3691, 2021.

[8] Daniel McDuff, Javier Hernandez, Erroll Wood, Xin Liu, and Tadas
Baltrusaitis. Advancing non-contact vital sign measurement using
synthetic avatars. arXiv preprint arXiv:2010.12949, 2020.

[9] Elad Richardson, Matan Sela, and Ron Kimmel. 3d face reconstruction
by learning from synthetic data. In 2016 fourth international conference
on 3D vision (3DV), pages 460–469. IEEE, 2016.

[10] Nikita Jaipuria, Xianling Zhang, Rohan Bhasin, Mayar Arafa, Punarjay
Chakravarty, Shubham Shrivastava, Sagar Manglani, and Vidya N Murali.
Deflating dataset bias using synthetic data augmentation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops, pages 772–773, 2020.

[11] Yunzhu Li, Antonio Torralba, Anima Anandkumar, Dieter Fox, and
Animesh Garg. Causal discovery in physical systems from videos.
Advances in Neural Information Processing Systems, 33:9180–9192,
2020.

[12] Kexin Yi, Chuang Gan, Yunzhu Li, Pushmeet Kohli, Jiajun Wu, Antonio
Torralba, and Joshua B Tenenbaum. Clevrer: Collision events for video
representation and reasoning. In International Conference on Learning
Representations, 2019.

[13] Ossama Ahmed, Frederik Träuble, Anirudh Goyal, Alexander Neitz,
Yoshua Bengio, Bernhard Schölkopf, Manuel Wüthrich, and Stefan Bauer.
Causalworld: A robotic manipulation benchmark for causal structure and
transfer learning. arXiv preprint arXiv:2010.04296, 2020.

[14] Hoon Kim, Kangwook Lee, Gyeongjo Hwang, and Changho Suh. Crash
to not crash: Learn to identify dangerous vehicles using a simulator. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 978–985, 2019.

[15] Mohammad Sadegh Aliakbarian, Fatemeh Sadat Saleh, Mathieu Salz-
mann, Basura Fernando, Lars Petersson, and Lars Andersson. Viena: A
driving anticipation dataset. In Asian Conference on Computer Vision,
pages 449–466. Springer, 2018.

[16] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and
Vladlen Koltun. Carla: An open urban driving simulator. In Conference
on robot learning, pages 1–16. PMLR, 2017.

[17] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim:
High-fidelity visual and physical simulation for autonomous vehicles. In
Field and service robotics, pages 621–635. Springer, 2018.

[18] Daniel McDuff, Yale Song, Jiyoung Lee, Vibhav Vineet, Sai Vemprala,
Nicholas Gyde, Hadi Salman, Shuang Ma, Kwanghoon Sohn, and
Ashish Kapoor. Causalcity: Complex simulations with agency for causal
discovery and reasoning. arXiv preprint arXiv:2106.13364, 2021.

[19] Angelos Filos, Panagiotis Tigkas, Rowan McAllister, Nicholas Rhinehart,
Sergey Levine, and Yarin Gal. Can autonomous vehicles identify, recover
from, and adapt to distribution shifts? In International Conference on
Machine Learning, pages 3145–3153. PMLR, 2020.

[20] Mar Gonzalez-Franco, Eyal Ofek, Ye Pan, Angus Antley, Anthony Steed,
Bernhard Spanlang, Antonella Maselli, Domna Banakou, Nuria Pelechano,
Sergio Orts-Escolano, et al. The rocketbox library and the utility of
freely available rigged avatars. Frontiers in virtual reality, page 20, 2020.

[21] Edward T Hall, Ray L Birdwhistell, Bernhard Bock, Paul Bohannan,
A Richard Diebold Jr, Marshall Durbin, Munro S Edmonson, JL Fischer,
Dell Hymes, Solon T Kimball, et al. Proxemics [and comments and
replies]. Current anthropology, 9(2/3):83–108, 1968.

[22] Xiao Cui and Hao Shi. A*-based pathfinding in modern computer
games. International Journal of Computer Science and Network Security,
11(1):125–130, 2011.

[23] Oron Nir, Gal Rapoport, and Ariel Shamir. Cast: Character labeling in
animation using self-supervision by tracking. In Computer Graphics
Forum, volume 41, pages 135–145. Wiley Online Library, 2022.

[24] Yifu Zhang, Peize Sun, Yi Jiang, Dongdong Yu, Zehuan Yuan, Ping Luo,
Wenyu Liu, and Xinggang Wang. Bytetrack: Multi-object tracking by
associating every detection box. arXiv preprint arXiv:2110.06864, 2021.

[25] Patrick Dendorfer, Aljosa Osep, Anton Milan, Konrad Schindler, Daniel
Cremers, Ian Reid, Stefan Roth, and Laura Leal-Taixé. Motchallenge:
A benchmark for single-camera multiple target tracking. International
Journal of Computer Vision, 129(4):845–881, 2021.

16

Authorized licensed use limited to: GOOGLE. Downloaded on April 07,2023 at 04:12:22 UTC from IEEE Xplore. Restrictions apply.

